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Problem Statement

The same treatment may affect different individuals differently –
how can we conduct efficient inference on the heterogeneous TE?

Personalized medicine

Which radiation therapy is most appropriate for a cancer patient?

Targeted advertisement

What is the best ad to play on Youtube given my subscriptions?

Fairness in machine learning/ subgroup analysis

Does early screening in college applications discriminate against certain
minorities?
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Modelling Framework

Potential Outcome Framework

- Treatment indicator: D ∈ {0, 1}.

- Unobserved potential outcomes: Y (0), Y (1) ∈ R.

- Observed outcome: Y = DY (1) + (1 − D)Y (0).

- High-dim covariates: X ∈ Rp with p ≫ n.

Heterogeneous Quantile Treatment Effect (HQTE)

δ(τ ; z) := QY (1)(τ ; z) − QY (0)(τ ; z),

with QY (d)(τ |z) τ th conditional quantile of Y | X = z (Doksum, 1986).

Identifiability of the HQTE

- Unconfoundedness assumption

- Sparse linear quantile regression function: QY (d)(τ ; z) = z′θd(τ) and
supτ∈T ∥θd(τ)∥0 ≪ p ∧ n for all τ ∈ T ⊂ (0, 1).
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Why estimate a high-dim linear HQTE curve?

δ(τ ; z) := z′θ1(τ) − z′θ0(τ), τ ∈ T ⊂ (0, 1)

dense z ∈ Rp, uniform in τ ∈ T

- heterogeneity across different quantiles τ

- uniform confidence bands for HQTE curve

- maximal TE supτ∈T δ(τ ; z) (subgroup analysis)

- integrated TE
∫

T δ(τ ; z)dτ (robust HQTE)

sparse z ∈ Rp

differential TE between sub-populations characterized by a few
pre-treatment covariates (e.g. age, race, gender, etc.)

unconfoundedness assumption is more plausible when X is a rich set of
covariates (aka “high-dimensional”) (Rubin, 2009)
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Preliminary thoughts about estimating the HQTE curve

δ(τ ; z) := z′θ1(τ) − z′θ0(τ), τ ∈ T ⊂ (0, 1)

θd(τ) ∈ Rp is high-dimensional

=⇒ we have to use some regularized estimator which is biased

z ∈ Rp may be dense

=⇒ if z /∈ span(X1, . . . , Xn) there is an out-of-sample prediction bias

Before we can discuss efficient estimation of the HQTE,
we need to think about debiasing procedures!
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Outline

1. Heuristics: Efficient Debiasing of Conditional Quantiles

2. Theory: Properties of the Rank-Score Debiasing Algorithm

3. Illustration: Differential Effect of Statin Usage in Alzheimer’s Patients
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How to correct biased quantile estimates? (1)

Q̂debiased
1/2 = Q̂1/2 +

#{data points > Q̂1/2}
2 −

#{data points ≤ Q̂1/2}
2

= 1
3 + 5

2 − 3
2 = 4

3

?=⇒ Q̂debiased
τ = Q̂τ +

n∑
i=1

(
τ − 1{Yi ≤ Q̂τ }

)
, τ ∈ (0, 1)

7 / 29



How to correct biased quantile estimates? (2)

Q̂debiased
1/2 = Q̂1/2 +

2 × #{data points > Q̂1/2}
2 −

2 × #{data points ≤ Q̂1/2}
2

= 1
3 + 2 × 5

2 − 2 × 3
2 = 8

3

?=⇒ Q̂debiased
τ = Q̂τ + scale ×

n∑
i=1

(
τ − 1{Yi ≤ Q̂τ }

)
, τ ∈ (0, 1)

8 / 29



How to correct biased quantile estimates? (3)

=⇒ Q̂debiased
Y (τ) = Q̂Y (τ) + scale ×

n∑
i=1

weighti ×
(
τ − 1{Yi ≤ Q̂Y (τ)}

)

How to adapt this idea to the conditional quantile estimate Q̂Y (τ |z)?
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Debiasing conditional quantile estimates

“Rank-Score Balancing Weights” Only the signs (rank-scores) of residuals not their 
magnitude are informative in quantile regression.

Rank-scores are dimensionless; to compare them to 
the leading term, put them on roughly the same scale.

θ̂(τ) − solution to ℓ1-penalized QR program
f̂i(τ) − an estimate of fY |X(X′

iθ(τ)|Xi)
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Balancing bias and variance to find the optimal w
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Rank-score debiasing algorithm
1 Compute ℓ1-penalized quantile regression vectors:

θ̂d(τ) ∈ arg min
θ∈Rp

 ∑
i:Di=d

ρτ (Yi − X ′
iθ) + λd

p∑
j=1

|θj |

 .

2 Compute rank-score debiasing weights:

ŵ(τ) ∈ arg min
w∈Rn


n∑

i=1
w2

i f̂−2
i (τ) :

∥∥∥∥∥z − 1√
n

∑
i:Di=d

wiXi

∥∥∥∥∥
∞

≤ γd

n
, d ∈ {0, 1}

 ,

where f̂i(τ) is an estimate of fY (d)|X(X ′
iθd(τ)|Xi).

3 Construct rank-score debiased estimates:

Q̂rank
Y (d)(τ ; z) := z′θ̂d(τ) + 1√

n

∑
i:Di=d

ŵi(τ)τ − 1{Yi ≤ X ′
i θ̂d(τ)}

f̂i(τ)
,

δ̂rank(τ ; z) := Q̂rank
Y (1)(τ ; z) − Q̂rank

Y (0)(τ ; z).

12 / 29



Outline

1. Heuristics: Efficient Debiasing of Conditional Quantiles

2. Theory: Properties of the Rank-Score Debiasing Algorithm

3. Illustration: Differential Effect of Statin Usage in Alzheimer’s Patients
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(Un)expected statistical properties

Consistent and asymptotically unbiased

intuition: “box-constraint” in step 2 of the algorithm balances covariates
z, X1, . . . , Xn and controls out-of-sample prediction bias

Asymptotically normal/ weakly convergent to a Gaussian process

intuition: leading term of the “Taylor-like expansion” with fixed weights w
is a sum of centered i.i.d. random variables

Semi-parametric efficient

step 2 of the algorithm minimizes the empirical sample version of the
asymptotic variance of the leading term of the “Taylor-like expansion”

Simple consistent estimate of asymptotic covariance function

optimal value of the objective function in step 2 of the algorithm is a
consistent estimate of the asymptotic covariance function
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The two main challenges in the theoretical analysis

Q̂rank
Y (d)(τ ; z) = z′θ̂d(τ) + 1√

n

∑
i:Di=d

ŵd,i(τ)τ − 1{Yi ≤ X ′
i θ̂d(τ)}

f̂i(τ)

consistent estimates f̂i(τ) of the conditional densities fY (d)|X(X ′
iθd(τ)|Xi)

=⇒ Koenker’s nonparametric density estimator

=⇒ other density estimators?

rank-score balanced estimator with optimal weights ŵd,i(τ) does not satisfy
a “Taylor-like expansion”

=⇒ consider the dual of the rank-score debiasing program

=⇒ Q̂rank
Y (d)(τ ; z) is an affine function of the dual solution v̂d(τ)

=⇒ Q̂rank
Y (d)(τ ; z) is amenable to high-dim empirical process theory
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Q̂rank
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1

2n
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f̂i(τ)
(
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)
Xi
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Rank-score debiased estimate is semi-parametric efficient
Theorem
Under regularity conditions,

√
n
(

Q̂rank
Y (d)(τ |z) − QY (d)(τ |z)

)
; N

(
0, τ(1 − τ)z′D−1

2,d(τ)z
)

.

Dk,d(τ) − denotes E[fk
d (τ)XX′1{D = d}], k = 0, 1, 2

fd(τ) − shorthand for fY (d)|X(X′βd(τ)|X)

Same variance as the weighted QR program (Koenker and Zhao, 1994)

θ̃d(τ) ∈ arg min
θ∈Rp

∑
i:Di=d

f̂−1
i (τ)ρτ (Yi − X ′

iθ).

More efficient than the standard QR estimator in the sense that

z′D−1
2,d(τ)z ≤ z′D−1

1,d(τ)D0,d(τ)D−1
1,d(τ)z.

Attains semi-parametric efficiency bound (Newey and Powell, 1990).
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Rank-score debiased estimate is semi-parametric efficient

Theorem
Under regularity conditions,

√
n
(

Q̂rank
Y (d)(τ |z) − QY (d)(τ |z)

)
; N

(
0, τ(1 − τ)z′D−1

2,d(τ)z
)

.

Dk,d(τ) − denotes E[fk
d (τ)XX′1{D = d}], k = 0, 1, 2

fd(τ) − shorthand for fY (d)|X(X′βd(τ)|X)

Theorem
Under regularity conditions,

√
n
(
δ̂rank(τ ; z) − δ(τ ; z)

)
; N

(
0, σ2(τ ; z)

)
,

where

σ2(τ ; z) = τ(1 − τ)z′ [D−1
2,1(τ) + D−1

2,0(τ)
]

z.
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Asymptotic variance can be estimated easily

For τ ∈ T define

σ̂2
n(τ ; z) := τ(1 − τ)

n∑
i=1

ŵ2
i (τ)f̂−2

i (τ).

Uniformly consistent estimate of covariance
Under regularity conditions,

sup
τ∈T

∣∣σ̂2
n(τ ; z) − σ2(τ ; z)

∣∣ = op(1).

By-product of estimating the rank-score balancing weights
We don’t have to estimate the inverse of a high-dim. matrix
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Supporting Monte Carlo Experiments

We compare the following estimators:

- Unweighted Oracle: Estimator based on covariates in support of θd only

- Rank: Our rank-score debiased estimator

- Lasso: ℓ1-penalized quantile regression estimator

- Refit: Refit based on support of ℓ1-penalized quantile regression estimator

- Debias: Estimator using debiased ℓ1-penalized quantile regression estimate
by Zhao et al. (2019)

We report (based on 2,000 MC samples):

-
√

n × Bias

- n × Variance

- 95% Coverage Probability

- histogram of standardized HQTE
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Homoscedastic Design
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Heteroscedastic Design
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Outline

1. Heuristics: Efficient Debiasing of Conditional Quantiles

2. Theory: Properties of the Rank-Score Debiasing Algorithm

3. Illustration: Differential Effect of Statin Usage in Alzheimer’s Patients
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Basic Scientific Background

Goal:
Estimate the heterogeneous effect of statin usage on lowering the Low-Density-
Lipoprotein Cholesterol (LDL-c) concentration levels in Alzheimer’s disease
(AD) patients.

Relevance:
Elevated concentration of LDL-c is considered a risk factor for AD.

Treating AD patients with statin to reduce their LDL-c concentration
appears to slow down progression of AD.

Heterogeneity:
Lifestyle patterns (i.e. diets, levels of physical activity, alcohol consumption, and
smoking status) affect LDL-c concentration levels.
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Study Design
Subset of UK Biobank data set

3713 patients with Alzheimer’s disease (and AD proxies), older than 65yrs,
no missing covariates, and no cholesterol medication history

To account for genetic pleiotropy and linkage disequilibrium we include 637
SNPs and lifestyle factors associated with LDL cholesterol.

To eliminate (some) confounders we do not consider statin usage but the
functionally equivalent genetic variant rs12916-T; 3150 subjects carry, 563
subjects don’t carry this variant.

Does the effect of a “healthy lifestyle” (defined as a healthy diet, phys-
ical activities, and reduced smoking) on lowering the LDL-c concentra-
tion differ in control and treatment group?

Does the effect of statin usage on lowering the LDL-c concentration
differ between Alzheimer’s patients with different lifestyles?
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HQTE Regression Model

Y − LDL-c concentration in mg/dL

X1 − intercept

X2, . . . , X18 − lifestyle patterns

X19 − gender

X20, . . . , X637 − SNPs associated with the LDL-c concentration

Differential effect of statin usage on LDL-c concentration

δ̂rank(τ ; z) := Q̂rank
1 (τ ; z) − Q̂rank

0 (τ ; z),

where z = (0, 0, 1, . . . , 1︸ ︷︷ ︸
8

, −1, . . . , −1︸ ︷︷ ︸
6

, 0, . . . , 0)′ ∈ R637.
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Differential HQTE of statin usage on LDL-c concentration

(A) LDL-c plasma concentration for the treated and control group. (B) Differential
HQTE of statin usage on LDL-c concentration by healthy lifestyle. Shaded areas are
uniform 95% confidence bands.
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Illustrative Individual HQTEs
(subjects characterized by individual z’s)

Heterogeneous quantile treatment effects of statin usage for three subjects. Shaded
areas are uniform 95% confidence bands.
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Summary

Conditional quantile regression is a flexible semi-parametric framework to
model heterogeneous treatment effects.

Rank-score debiasing removes shrinkage bias and yields a semi-parametric
efficient estimator.

Our methodology can be motivated as either bias-variance trade-off or
Neyman orthogonalization.

The general principle is applicable beyond conditional quantile regression.
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