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Problem Statement

The same treatment may affect different individuals differently —
how can we conduct efficient inference on the heterogeneous TE?

)

@ Personalized medicine

Which radiation therapy is most appropriate for a cancer patient?

o Targeted advertisement

What is the best ad to play on Youtube given my subscriptions?

@ Fairness in machine learning/ subgroup analysis

Does early screening in college applications discriminate against certain
minorities?
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Modelling Framework

@ Potential Outcome Framework

- Treatment indicator: D € {0,1}.

Unobserved potential outcomes: Y (0),Y (1) € R.
- Observed outcome: Y = DY (1) + (1 — D)Y(0).

- High-dim covariates: X € R? with p > n.

o Heterogeneous Quantile Treatment Effect (HQTE)

3(t;2) = QY(l)(T; z) — QY(O)(T§ z),

with Qy(4)(7]2) Tth conditional quantile of Y | X = z (Doksum, 1986).

o ldentifiability of the HQTE

- Unconfoundedness assumption

- Sparse linear quantile regression function: Qy (q)(7;2) = 2'04(7) and
sup, ¢y [|0a(7)|l, K pAnforall €T C(0,1).
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Why estimate a high-dim linear HQTE curve?

0(r;2) :=2'01(7) — 2'00(7), 7€ T C(0,1) J

o dense z € R?, uniform in 7 € T

- heterogeneity across different quantiles 7
- uniform confidence bands for HQTE curve
- maximal TE sup_ .+ 6(7; z) (subgroup analysis)

- integrated TE de(T;z)dT (robust HQTE)

@ sparse z € RP

differential TE between sub-populations characterized by a few
pre-treatment covariates (e.g. age, race, gender, etc.)

@ unconfoundedness assumption is more plausible when X is a rich set of
covariates (aka “high-dimensional”) (Rubin, 2009)
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Preliminary thoughts about estimating the HQTE curve

0(t;2) :=2'601(1) — 2'00(1), T7€T C(0,1) J

@ 04(7) € R? is high-dimensional

= we have to use some regularized estimator which is biased
@ 2z € R? may be dense

= if z ¢ span(X3,...,X,,) there is an out-of-sample prediction bias

Before we can discuss efficient estimation of the HQTE,
we need to think about debiasing procedures! J
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Outline

1. Heuristics: Efficient Debiasing of Conditional Quantiles
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How to correct biased quantile estimates? (1)
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How to correct biased quantile estimates? (2)

: X data point :
biased estimate
of the median
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How to correct biased quantile estimates? (3)

RS data point |
biased estimate
of the median
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= Qfebiased (1) — Qy (1) + scale x Zweighti x (1= 1{y; < @Y(T)})
=1

How to adapt this idea to the conditional quantile estimate Qy (7|z)? J
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Debiasing conditional quantile estimates

“Rank-Score Balancing Weights” | Only the signs (rank-scores) of residuals not their
magnitude are informative in quantile regression.

Adebias 1 N—
Qe (rle) =@ 0D 7= 3 @)

G0

Rank-scores are dimensionless; to compare them to
the leading term, put them on roughly the same scale.

O(r) — solution to ¢1-penalized QR program
fi(r) — an estimate of fyx (X[0(T)|X:)
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Balancing bias and variance to find the optimal w

Sum of independent and centered random
variables, asymp. normal with variance

(1= B[} 30w fyfx (Xi0(7) X5)]

QY™ (r]z) = Qv (7]2)

Minimize
variance

Bias term, bounded by + T‘n(z, w)

o o ] o)~
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Rank-score debiasing algorithm

@ Compute ¢1-penalized quantile regression vectors:

P
04(7) € argmin Z pr (Y — X10) + Mg Z 6,1

0ekr | i:p,=d j=1

@ Compute rank-score debiasing weights:

LS

Vd
< =.d 0,1
w(T) € argmin Ew <5 e {0,1} »,

weR™ | 35 zD,_d -
where f;(7) is an estimate of fy (ayx (Xi0a(7)|X5).
© Construct rank-score debiased estimates:
. . 1 T —1{Y; < XM04(7)}
rank / T Ay
Sty (13 2) := 2"04(7) + — W (1) - ,
(d) \/ﬁi:;d fi(1)

5ok (s 2) = QiR (73 2) — QR (75 2).
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Outline

2. Theory: Properties of the Rank-Score Debiasing Algorithm
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(Un)expected statistical properties

Consistent and asymptotically unbiased

intuition: “box-constraint” in step 2 of the algorithm balances covariates
z,X1,...,X, and controls out-of-sample prediction bias

Asymptotically normal/ weakly convergent to a Gaussian process

intuition: leading term of the “Taylor-like expansion” with fixed weights w
is a sum of centered i.i.d. random variables

Semi-parametric efficient

step 2 of the algorithm minimizes the empirical sample version of the
asymptotic variance of the leading term of the “Taylor-like expansion”

Simple consistent estimate of asymptotic covariance function

optimal value of the objective function in step 2 of the algorithm is a
consistent estimate of the asymptotic covariance function
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The two main challenges in the theoretical analysis

~ " 1 . —1{y; < X6
QR (ri2) = 20u() 4 = 3 () A=)
" Died fi(7)
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The two main challenges in the theoretical analysis

) A R ~1{Y; < X0
Qi (r32) = #0a(r) + —= i;D;dwdﬂ(T)T : filr) o

@ consistent estimates f;(7) of the conditional densities Ty (@) x (Xi0a(7)| X;)
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The two main challenges in the theoretical analysis

~ N 1 ~ —1{Y; < X0
Q?'(‘S) (riz) = Z/od(T) * % i:J;dwdd(T)T : fz(T) o

@ consistent estimates f;(7) of the conditional densities Ty (@) x (Xi0a(7)| X;)

— Koenker's nonparametric density estimator
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The two main challenges in the theoretical analysis

) ) . ~ —1{y; < X/9
R

@ consistent estimates f;(7) of the conditional densities Ty @y x (Xi0a(7T)| X3)

— Koenker's nonparametric density estimator

= other density estimators?
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The two main challenges in the theoretical analysis
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@ rank-score balanced estimator with optimal weights w4 ;(7) does not satisfy
a “Taylor-like expansion”
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The two main challenges in the theoretical analysis

T~ 1{Y; < X{fa(r)}
filr)

5 1 f2(r) 5
Ayrank . o . /
Qp(ri2) = 0u(r) = - 3 5 Dxlr)
@ consistent estimates f;(7) of the conditional densities Ty @y x (Xi0a(7T)| X3)

— Koenker's nonparametric density estimator

= other density estimators?

@ rank-score balanced estimator with optimal weights @ ;(7) does not satisfy
a “Taylor-like expansion”

= consider the dual of the rank-score debiasing program

= Q’;’Ed) (73 2) is an affine function of the dual solution 94(7)
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The two main challenges in the theoretical analysis

!

A;??s) (152) = 2'04(7 <2n Z filr (r-1{y; < X{éd(T)})Xi> 0q(7)
i:D;=d

e consistent estimates f;(7) of the conditional densities Ty (@) x (X{0a(7)| X;)

—> Koenker’s nonparametric density estimator

= other density estimators?
@ rank-score balanced estimator with optimal weights @, ;(7) does not satisfy
a "Taylor-like expansion”

— consider the dual of the rank-score debiasing program

= nggg) (7; 2) is an affine function of the dual solution 04(T)

- Q’;’Et}) (73 z) is amenable to high-dim empirical process theory
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Rank-score debiased estimate is semi-parametric efficient

Theorem
Under regularity conditions,

Vi (@ (712) = Qi (1)) ~ N (0,71 = 1)’ D3 h(7)2)

Dy, q(1) — denotes E[f¥ (1) XX'1{D = d}], k=0,1,2
fd(T) — shorthand for fy(d)|X(X,ﬂd(T)|X)

@ Same variance as the weighted QR program (Koenker and Zhao, 1994)

Gu(r) € argmin S f71(1)ps(V; - X[0).

oeRrp :D;=d
@ More efficient than the standard QR estimator in the sense that
Z’D;;(T)z < Z/Dié(T)Do’d(T)Dié(T)Z.

@ Attains semi-parametric efficiency bound (Newey and Powell, 1990).
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Rank-score debiased estimate is semi-parametric efficient

Theorem

Under regularity conditions,

Vi (Qu (712) = Qv (r12)) ~ N (0,7(1 = 1)/ D3 3(7)2)

Dy,q(1) — denotes E[f¥(1)XX'1{D = d}], k=0,1,2
fd(T) — shorthand for fY(d)|X(X,,8d(T)|X)

Theorem

Under regularity conditions,
\/ﬁ(grank(f; z) —o(T; z)) ~ N (O, o?(t; z)) ,

where

o%(r;2) =1(1—1)2 [DQ_%(T) + Dié(T)] z.
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Asymptotic variance can be estimated easily

For 7 € T define

Uniformly consistent estimate of covariance

Under regularity conditions,

sup [o7,(732) — 0% (752)| = 0p(1).
TET

@ By-product of estimating the rank-score balancing weights

@ We don't have to estimate the inverse of a high-dim. matrix
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o We

o We

Supporting Monte Carlo Experiments

compare the following estimators:

Unweighted Oracle: Estimator based on covariates in support of 64 only
Rank: Our rank-score debiased estimator

Lasso: f1-penalized quantile regression estimator

Refit: Refit based on support of ¢1-penalized quantile regression estimator

Debias: Estimator using debiased ¢;1-penalized quantile regression estimate
by Zhao et al. (2019)

report (based on 2,000 MC samples):

v/n X Bias

n X Variance
95% Coverage Probability
histogram of standardized HQTE
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Homoscedastic Design
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Heteroscedastic Design
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Outline

3. lllustration: Differential Effect of Statin Usage in Alzheimer’s Patients
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Basic Scientific Background

Goal:

Estimate the heterogeneous effect of statin usage on lowering the Low-Density-
Lipoprotein Cholesterol (LDL-c) concentration levels in Alzheimer's disease
(AD) patients.

Relevance:

@ Elevated concentration of LDL-c is considered a risk factor for AD.

@ Treating AD patients with statin to reduce their LDL-c concentration
appears to slow down progression of AD.

Heterogeneity:

Lifestyle patterns (i.e. diets, levels of physical activity, alcohol consumption, and
smoking status) affect LDL-c concentration levels.

<
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Study Design
Subset of UK Biobank data set

@ 3713 patients with Alzheimer's disease (and AD proxies), older than 65yrs,
no missing covariates, and no cholesterol medication history

@ To account for genetic pleiotropy and linkage disequilibrium we include 637
SNPs and lifestyle factors associated with LDL cholesterol.

@ To eliminate (some) confounders we do not consider statin usage but the
functionally equivalent genetic variant rs12916-T; 3150 subjects carry, 563
subjects don't carry this variant.

Does the effect of a “healthy lifestyle” (defined as a healthy diet, phys-
ical activities, and reduced smoking) on lowering the LDL-c concentra-
tion differ in control and treatment group?

Does the effect of statin usage on lowering the LDL-c concentration
differ between Alzheimer’s patients with different lifestyles?

24/29



HQTE Regression Model

Y — LDL-c concentration in mg/dL

X1 — intercept

X, ..., X 8 — lifestyle patterns

X19 — gender

Xo0,...,Xe37 — SNPs associated with the LDL-c concentration

Differential effect of statin usage on LDL-c concentration
3rank(7_; 2) = @Iiank(,r; ) — Q\Bank(,r; 2),

where z = (0,0,1,...,1,—1,...,—1,0,...,0)" € R537,
——— —— ——
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Differential HQTE of statin usage on LDL-c concentration
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(A) LDL-c plasma concentration for the treated and control group. (B) Differential
HQTE of statin usage on LDL-c concentration by healthy lifestyle. Shaded areas are

uniform 95% confidence bands.

26/29



lHlustrative Individual HQTEs

(subjects characterized by individual z’s)

Subject A Subject B Subject C

N N

\/\//\__.

0.75

Effect of Statin on lowering LDL (unit: mg/dl)

Effect of Statin on lowering LDL (unit: mg/dl)

Effect of Statin on lowering LDL (unit: mg/dl)

0.75

0.50 0.50 050
(A) Quantile level © (B) Quantile level © (C) Quantile level

Heterogeneous quantile treatment effects of statin usage for three subjects. Shaded
areas are uniform 95% confidence bands.
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Summary

Conditional quantile regression is a flexible semi-parametric framework to
model heterogeneous treatment effects.

Rank-score debiasing removes shrinkage bias and yields a semi-parametric
efficient estimator.

Our methodology can be motivated as either bias-variance trade-off or
Neyman orthogonalization.

The general principle is applicable beyond conditional quantile regression.
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