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Preface

These notes were prepared for a four day short course on empirical process theory for ad-
vanced undergraduate and graduate students at the School of Statistics and Data Science,
Nankai University. The material is mostly compiled from Kato’s (2017) lecture notes, Ver-
shynin’s (2012) overview article, and the textbook by Boucheron et al. (2013). The text-
books by Pollard (1984), van der Vaart and Wellner (1996), and Giné and Nickl (2015) may
also serve as excellent references on the topics in this short course.

It is impossible to cover all aspect of the theory of empirical processes in just four
lectures (even if each lecture is three hours long). However, I did try to make these notes
self-contained, and with few exceptions provide proofs of all claims and theorems. The main
material covered and its sources are:

• sub-Gaussian and sub-exponential random variables, with applications to finite and
structured sets, with proofs due to Vershynin (2012) and Boucheron et al. (2013);

• symmetrization inequalities, with proofs due to Kato (2017) and Giné and Nickl
(2015);

• maximal inequalities, with (modified) proofs due to Kato (2017) and Boucheron et al.
(2013);

• uniform laws of large numbers and central limit theorems for empirical processes, with
proofs due to Kato (2017) and van der Vaart and Wellner (1996), and examples due
to Pollard (1984).

Empirical process theory is notorious for its measurability issues. To make this expo-
sition accessible for a broad audience and to allow for a fast-paced lecture, I follow Kato
(2017) and assume throughout that the classes of functions are pointwise measurable. I
introduce the notions of outer expectation and probability only towards the end of lecture
series and only in the context of weak convergence.

I would like to specially thank Professors Zhaojun Wang and Changliang Zou for inviting
me to Nankai University and their warm hospitality that made my stay in Tianjin so
memorable.

Tianjin, December 24, 2018
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Notation and setting

• Let (Ω,A,P) be an underlying probability space that should be understood in the
context.

• Let (S,S, P ) be a probability space. Let X1, X2, . . . be i.i.d S-valued random variables
with common distribution P . We think of X1, X2, . . . as the coordinates of the infinite
product probability space (SN,SN, PN), which may be embedded in an even larger
probability space (e.g. when the symmetrization technique is used).

• For any probability measure Q on a measurable space (S,S) and any measurable
function f : S → [−∞,∞] we use the notation Qf :=

∫
fdQ whenever the integral

exists. Further, for 1 ≤ p <∞, let Lp(Q) denote the space of all measurable functions
f : S → R such that ‖f‖Q,p := (Q|f |p)1/p < ∞. We define the supremum-norm as
‖f‖∞ := supx∈S |f(x)|.

• Given two measurable spaces (S,S) and (T, T ), a mapping f : S → T is said to be
S/T -measurable or simply measurable if f−1(T ) ⊂ S, i.e. f−1(B) :=

{
s ∈ S : f(s) ∈

B
}
∈ S for all B ∈ T . A random element of T is a map X : (Ω,A,P)→ (T, T ) such

that X is Ω/T -measurable.

• Let F be a collection of measurable functions S → R, to which a measurable envelope
F : S → [0,∞) is attached. An envelope F of F is a function such that F (x) ≥
supf∈F |f(x)| for all x ∈ S. Unless otherwise stated, we assume that F ⊂ L1(P ).
To avoid measurability problems, we assume that F is pointwise measurable, i.e. F
contains a countable subset G such that for every f ∈ F there exists a sequence
{gm}m≥1 ∈ G such that gm(x)→ f(x) for all x ∈ S. Observe that if F ∈ L1(P ), then
by the dominated convergence theorem {f−Pf : f ∈ F} is also pointwise measurable.
For a detailed discussion of pointwise measurability we refer to Section 2.3 in van der
Vaart and Wellner (1996).

The existence of a measurable envelope is indeed an assumption. Under pointwise
measurability, a measurable envelope exists if and only if F is pointwise bounded
(i.e., supf∈F < ∞ for each x ∈ S). The function F = supf∈F |f | is the minimal
envelope but we allow for other choices.

• For a set T , let `∞(T ) denote the space of all bounded functions T → R, equipped with
the supremum norm ‖f‖T := supt∈T |f(t)|. A non-negative function d : T×T → [0,∞]
is called a semi-metric if it satisfies the following three properties: (i) d(t, t) = 0, (ii)
d(s, t) = d(t, s); (iii) d(s, t) ≤ d(s, u) + d(u, t). If in addition d(s, t) = 0 implies that
s = t, then d is a metric. Equipped with a semi-metric d, (T, d) is called a semi-metric
space.
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1 Introduction

Let X1, . . . , Xn be a random sample of i.i.d. real-valued random variables with distribution
function F and corresponding probability measure P on R. Then, the empirical distribution
function of the random sample is defined as

Fn(x) :=
1

n

n∑
i=1

1(−∞,x](Xi), x ∈ R.

In other words, for each x ∈ R the quantity Fn(x) is the relative frequency of Xi’s in the
random sample that are less than or equal to x. Two basic results concerning the empirical
distribution function Fn are the Glivenko-Cantelli and the Donsker theorem.

Theorem 1 (Glivenko-Cantelli).

‖Fn − F‖∞ = sup
x∈R

∣∣Fn(x)− F (x)
∣∣ a.s.−→ 0.

Theorem 2 (Donsker).

√
n
(
Fn − F

) w−→ U(F ) in D(R, ‖ · ‖∞),

where D(R, ‖·‖∞) is the space of cadlag 1 functions, and U is the standard Brownian bridge
process on [0, 1]. That is, U is a centered Gaussian process with covariance function

E
[
U(s)U(t)

]
= s ∧ t− st, ∀s, t ∈ [0, 1].

In this course we are going to substantially generalize these two results. In particular,
if observations are in a more general sample space X (such as Rd, a Riemannian manifold,
a space of functions, . . . ), then the empirical distribution function Fn is not a very natural
object. It becomes more natural to consider the empirical measure Pn indexed by some
class of real-valued functions F on X . By this we mean the following: Let X1, . . . , Xn be
an i.i.d. random sample on X drawn from P . Then, the empirical measure Pn is defined as

Pn :=
1

n

n∑
i=1

δXi ,

where δz denotes the Dirac-measure at z. In other words, Pn denotes the random discrete
probability measure which puts mass 1/n at each of the n points X1, . . . , Xn. Thus, for any
Borel set A ⊂ X ,

Pn(A) :=
1

n

n∑
i=1

1A(Xi) =

∣∣{i ≤ n : Xi ∈ A
}∣∣

n
,

and for a real-valued function f on X ,

Pn(f) :=

∫
fdPn =

1

n

n∑
i=1

f(Xi),

1Right continuous and with left limit existing at each point.
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P (f) :=

∫
fdP = E

[
f(X1)

]
.

Let F be a collection of real-valued functions defined on X , then
{
Pn(f) : f ∈ F

}
is called

the empirical measure indexed by F . The corresponding empirical process is defined as

Gn :=
√
n
(
Pn − P

)
,

and the collection of random variables
{
Gn(f) : f ∈ F

}
is called the empirical process

indexed by F .

Remark 1 (Empirical distribution function). The classical distribution function for real-
valued random variables can be viewed as a special case with X = R and F =

{
1(−∞,x] : x ∈

R
}

.

The goal of empirical process theory is to study the properties of approximating Pf
by Pnf uniformly in F (assuming that P (f) < ∞ for all f ∈ F). In particular, one is
interested in the following two types of results:

• Glivenko-Cantelli-type results: Under what conditions on F does

‖Pn − P‖F := sup
f∈F
|Pnf − Pf | → 0 almost surely/ in L1/ in probability?

• Donsker-type results: Under what conditions on F does
{
Gn(f) : f ∈ F

}
converge as

a process to some limit object?

To answer these questions, we need to develop a modicum of empirical processes. In
Section 2 we introduce the notion of sub-Gaussian and sub-exponential random variables.
These families of random variables have tails that decay exponentially fast and this allows
us to easily establish results for collections of (countably) many events simultaneously. In
Section 3 we discuss the symmetrization technique that allows us to reduce many problems
involving arbitrary random variables to the case of sub-Gaussian random variables. In
Section 4 we develop maximal inequalities based on the chaining technique and entropy
conditions. In the last Section 5, using the techniques derived in the previous three sections,
we finally find answers to above questions. In particular, we establish a uniform law of large
numbers (Glivenko-Cantelli-type result) and a functional central limit theorem for empirical
processes (Donsker-type result).
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2 Sub-Gaussian and sub-exponential probability distributions

Empirical process theory is concerned with laws of large numbers and central limit theorems
that hold uniformly over a function class F . In this section, we introduce two families of
probability distributions – the sub-Gaussian and the sub-exponential family – that play a
crucial role in establishing uniform result. Both families have tails that decay exponentially
fast. We will see in later sections that such tail behavior helps us to establish results for
collections of (countably) many events simultaneously by simply adding up the exponentially
small tail probabilities.

2.1 Sub-Gaussian random variables

Recall the following properties of the standard normal distribution.

Proposition 1. Let Z ∼ N(0, 1) be a centered normal random variable with mean zero
and unit variance. Then, for all λ ∈ R,

E
[
eλZ
]

= eλ
2/2, (1)

for all integers p ≥ 1,

E
[
|Z|p

]1/p
=
√

2

(
Γ(1 + p/2)

Γ(1/2)

)1/p

= O (
√
p) , (2)

and for all t > 0,

P {|Z| ≥ t} ≤ 2e−t
2/2. (3)

Proof. The first claim follows by completing the squares, i.e.

E
[
eλZ
]

=
1√
2π

∫ ∞
−∞

eλte−t
2/2dt =

eλ
2/2

√
2π

∫ ∞
−∞

e−(t−λ)2/2dt = eλ
2/2.

The second claim follows by integration, i.e.

E
[
|Z|p

]
=

∫ ∞
0

P {|Z| > t} ptp−1dt =

√
2

π

∫ ∞
0

ptp−1e−t
2/2dt

(∗)
=

√
2

π

∫ ∞
0

p(2s)p/2−1e−sds = 2p/2
Γ(1 + p/2)

Γ(1/2)
,

where in (∗) use the substitution t = (2s)1/2. The third claim is proved as follows: Let
λ > 0 be a parameter to be chosen later. By Markov’s inequality and the first claim, we
obtain

P {Z ≥ t} = P
{
eλZ ≥ eλt

}
≤ e−λtE

[
eλZ
]

= e−λt+λ
2/2.

Optimizing in λ and thus choosing λ = t, we conclude that P {Z ≥ t} ≤ e−t
2/2. Repeating

this argument for −Z, we also find that P {Z ≤ −t} ≤ e−t2/2. Combining these two bound
we conclude that P {|Z| ≥ t} ≤ 2e−t

2/2.
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Theses three properties are in fact equivalent – a moment generating function as in 1,
a moment growth condition as in (2), and a super-exponential decay of the tail probability
as in (3).

Theorem 3. Let X be a random variable. Then the following properties are equivalent with
parameters Ki > 0 differing from each other by at most an absolute constant factor. 2

1. Tails: P {|X| > t} ≤ e1−t2/K2
1 for all t ≥ 0;

2. Moments: E
[
|X|p

]1/p ≤ K2
√
p for all p ≥ 1;

3. Super-exponential moment: E
[
eX

2/K2
3
]
≤ e.

Moreover, if E[X] = 0 then properties 1-3 are also equivalent to the following:

4. Moment generating function: E
[
etX
]
≤ et2K2

4 for all t ∈ R.

Proof. 1. ⇒ 2. Assume that property 1 holds. Without loss of generality we can assume
that K1 = 1; the general case follows by considering XK1. We compute

E
[
|X|p

]
=

∫ ∞
0

P {|X| ≥ t} dt ≤
∫ ∞

0
e1−t2ptp−1dt

(a)
=
(ep

2

)∫ ∞
0

e−spsp/2−1ds =
(ep

2

)
Γ
(p

2

) (b)

≤
(ep

2

)(p
2

)p/2
,

where (a) follows by substituting t with s1/2 and (b) follows from Stirling’s approximation,
which guarantees that

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n. Taking the p-th root yields

property 2 for some absolute constant K2.
2. ⇒ 3. Assume that property 2 holds. Without loss of generality we can assume that

K2 = 1. Let 0 < c ≤ (2e− 1)/(2e2). Then,

E
[
ecX

2]
=

∞∑
p=0

cpE
[
X2p

]
p!

≤
∞∑
p=0

cp(2p)p

p!
≤
∞∑
p=0

(2ec)p =
1

1− 2ec
≤ e,

where the first inequality follows from property 2 and the second from the lower bound of
Stirling’s approximation, i.e. n! ≥ (n/e)n. This gives property 3 with K3 = c−1/2.

3. ⇒ 1. Assume that property 3 holds. Without loss of generality we can assume that
K3 = 1. By Markov’s inequality we have

P {|X| > t} = P
{
eX

2 ≤ et2
}
≤ e−t2E

[
eX

2] ≤ e1−t2 .

This implies property 1 with K1 = 1.
2. ⇒ 4. Assume that property 2 holds and that E[X] = 0. Without loss of generality

we can assume that K2 = 1. Denote by X ′ an independent copy of X. Then,

E
[
etX
]
E
[
e−tX

]
= E

[
et(X−X

′)
] (a)

=
∞∑
p=0

t2pE
[
(X −X ′)2p

]
(2p)!

,

2The precise meaning of this equivalence is as follows: There exists an absolute constant C > 0 such that
property i implies property j with parameter Kj ≤ CKi for any two properties i, j ∈ {1, 2, 3, 4}.
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where (a) follows since E
[
(X − X ′)2p+1

]
= 0 by symmetry of X − X ′. Since x 7→ x2p is

convex, it follows that

E
[
(X −X ′)2p

]
≤ 22p−1

(
E
[
X2p

]
+ E

[
X ′

2p])
= 22pE

[
X2p

]
.

Therefore, by the property 2,

E
[
etX
]
E
[
e−tX

]
=
∞∑
p=0

t2pE
[
(X −X ′)2p

]
(2p)!

≤
∞∑
p=0

t2p22p(2p)p

(2p)!
.

Now, observe the following: Since 1− x ≤ e−x for all x ∈ R, we have

E
[
e−tX

]
≥ 1− tE

[
X
]

= 1, (4)

and for every integer p ≥ 1,

(2p)!

p!
=

p∏
j=1

(p+ j) ≥
p∏
j=1

(2j) = 2pp!. (5)

Using these two observations, we conclude that

E
[
etX
]
≤
∞∑
p=0

t2p22p(2p)p

(2p)!
≤
∞∑
p=0

t2p22ppp

(p!)(p!)
≤
∞∑
p=0

t2p22pep

p!
= e22et2 ,

where the first inequality follows from (4), the second from (5) and the third from the lower
bound of Sterling’s approximation. Thus, property 4 holds with K4 = 1/

√
4e.

4. ⇒ 1. Assume that property 4 holds. Without loss of generality we can assume that
K4 = 1. Now, proceed as in the proof of Proposition 1 eq. (3). Conclude that property 1
holds with K1 = 2.

Remark 2. The constants 1 and e in properties 1 and 3 are chosen for convenience. The
value 1 can be replaced by any positive number and e by any number greater than 1.

Remark 3. The assumption E[X] = 0 is only needed to prove necessity of property 4;
sufficiency holds without this assumption.

This equivalence motivates the notion of a sub-Gaussian random variable.

Definition 1 (Sub-Gaussian random variable and sub-Gaussian norm). A random variable
X that satisfies one of the equivalent properties 1 – 3 in Theorem 3 is called a sub-Gaussian
random variable. The sub-Gaussian norm of X, denoted by ‖X‖ψ2, is defined to be the
smallest K2 for which property 2 holds, i.e.

‖X‖ψ2 = sup
p≥1

p−1/2E
[
|X|p

]1/p
.
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Remark 4. By Theorem 3 every sub-Gaussian random variable X satisfies:

P {|X| > t} ≤ e1−ct2/‖X‖2ψ2 for all t ≥ 0, (6)

E
[
|X|p

]1/p ≤ p1/2‖X‖ψ2 for all p ≥ 1, (7)

E
[
e
cX2/‖X‖2ψ2

]
≤ e, (8)

E
[
etX
]
≤ eCt

2‖X‖2ψ2 for all t ∈ R, whenever E[X] = 0, (9)

where C, c > 0 are absolute constants.

Remark 5. Classical example of sub-Gaussian random variables are the following:

1. Gaussian: A normal random variable with variance σ2 is sub-Gaussian with ‖X‖ψ2 ≤
Cσ, where C > 0 is an absolute constant.

2. Bernoulli/ Rademacher: Consider a random variable X with distribution P {X = −1}
= P {X = 1} = 1/2. We call X a symmetric Bernoulli random variable/ Rademacher
random variable. Since |X| = 1, it follows that X is a sub-Gaussian random variable
with ‖X‖ψ2 = 1.

3. Bounded: Consider a bounded random variable X, i.e. |X| ≤ M almost surely
for some M . Then X is a sub-Gaussian random variable with ‖X‖ψ2 ≤ M . More
compactly, we may write ‖X‖ψ2 ≤ ‖X‖∞.

Recall that the normal distribution is rotation invariant. Given a finite number of
independent centered normal random variables Xi, their sum

∑
iXi is also a centered

normal random variable with Var (
∑

iXi) =
∑

i Var(Xi). Sub-Gaussian random variables
are also rotation invariant, although only approximately:

Lemma 1 (Rotation invariance). Consider a finite number of independent centered sub-
Gaussian random variables Xi. Then

∑
iXi is also a centered sub-Gaussian random variable

and ∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
2

ψ2

≤ C
∑
i

‖Xi‖2ψ2
,

where C > 0 is an absolute constant.

Proof. We estimate the moment generating function. By independence and property (9)
we have for all t ∈ R,

E

[
exp

(
t
∑
i

Xi

)]
= E

[∏
i

exp(tXi)

]
=
∏

E [exp(tXi)]

≤
∏
i

exp(C0t
2‖Xi‖2ψ2

) = exp

(
C0t

2
∑
i

‖Xi‖2ψ2

)
.

By the equivalence of properties 2 and 4 in Theorem 3 we conclude that ‖
∑

iXi‖2ψ2
≤

C1

(
C0
∑

i ‖Xi‖2ψ2

)1/2
, where C1 > 0 is an absolute constant. The proof is complete by

setting C = C1C
1/2
0 .
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We record the following two important consequences of the rotational invariance of
sub-Gaussian random variables.

Proposition 2 (Hoeffding-type inequality). Let X1, . . . , Xn be independent centered sub-
Gaussian random variables, and let K = maxi ‖Xi‖ψ2. Then, for every a ∈ Rn and every
t ≥ 0, we have

P

{∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
}
≤ e · exp

(
− ct2

K2‖a‖2

)
,

where c > 0 is an absolute constant.

Proof. The rotation invariance (Lemma 1) implies that ‖
∑n

i=1 aiXi‖2ψ2
≤ C

∑n
i=1 a

2
i ‖Xi‖2ψ2

≤
CK2‖a‖22. The claim follows now from Property (6).

Proposition 3 (Khintchine inequality). Let X1, . . . , Xn be independent centered sub-Gaussian
random variables with unit variance and ‖Xi‖ψ2 ≤ K. Then, for every a ∈ Rn and every
p ≥ 2, we have (

n∑
i=1

a2
i

)1/2

≤

(
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p)1/p

≤ CKp1/2

(
n∑
i=1

a2
i

)1/2

,

where C > 0 is an absolute constant.

Proof. The lower bound follows by independence and Hölder’s inequality. The upper bound
follows by the rotation invariance (Lemma 1) and property 7.

2.2 Sub-exponential random variables

Apart from sub-Gaussian random variables we often encounter random variables that have
exponential decaying tail probabilities but the decay is slower than Gaussian. Recall the
standard exponential random variable with exponential tail decay

P {X ≥ t} = e−t, t ≥ 0. (10)

As for the sub-Gaussian random variables, there exists a similar characterization for random
variables that have exponential tails as in (10).

Theorem 4. Let X be a random variable. Then the following properties are equivalent with
parameters Ki > 0 differing from each other by at most an absolute constant factor.

1. Tails: P {|X| > t} ≤ e1−t/K1 for all t ≥ 0;

2. Moments: E
[
|X|p

]1/p ≤ K2p for all p ≥ 1;

3. Exponential moment: E
[
eX/K3

]
≤ e.

Proof. The proof is similar to the proof of Theorem 3; we therefore omit it.
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We summarize this phenomenon in the following definition.

Definition 2 (Sub-exponential random variable and sub-exponential norm). A random
variable X that satisfies one of the equivalent properties 1 – 3 in Theorem 4 is called a
sub-exponential random variable. The sub-exponential norm of X, denoted by ‖X‖ψ1, is
defined to be the smallest K2 for which property 2 holds, i.e.

‖X‖ψ1 = sup
p≥1

p−1E
[
|X|p

]1/p
.

Remark 6. By Theorem 4 every sub-exponential random variable X satisfies:

P {|X| > t} ≤ e1−ct/‖X‖ψ1 for all t ≥ 0, (11)

E
[
|X|p

]1/p ≤ p‖X‖ψ1 for all p ≥ 1, (12)

E
[
ecX

2/‖X‖ψ1
]
≤ e, (13)

where C, c > 0 are absolute constants.

The moment generating function of a sub-exponential random variable has a similar
upper bound as the one of a sub-Gaussian random variable. However, the difference is that
the bound only holds in a neighborhood of zero rather than the whole real line. This is
inevitable, since the moment generating function of the standard exponential distribution
does not exist for t ≥ 1.

Lemma 2. Let X be a centered sub-exponential random variable. Then, for t ∈ R such
that |t| ≤ c/‖X‖ψ1, we have

E
[
etX
]
≤ eCt

2‖X‖2ψ1 ,

where C, c > 0 are absolute constants.

Proof. Without loss of generality we assume that ‖X‖ψ1 = 1 by replacing X with X/‖X‖ψ1

and t with t‖X‖ψ1 . We have by property (12) and the lower bound in Stirling’s approxi-
mation,

E
[
etX
]

= 1 + tE[X] +

∞∑
p=2

tpE
[
Xp
]

p!
≤ 1 +

∞∑
p=2

tppp

p!
≤ 1 +

∞∑
p=2

(2|t|)p.

For |t| ≤ 1/(2e) the right hand side in above display is bounded by 1 + 2e2t2 ≤ e2e2t2 . This
complete the proof.

Record several useful properties of sub-exponential random variables.

Proposition 4 (Sub-exponential is sub-Gaussian squared). A random variable X is sub-
Gaussian if and only if X2 is sub-exponential. Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2ψ2

.

8



Proof. This follows easily from the definition.

Proposition 5 (Centering). Let X be a random variable. Then,

‖X − E[X]‖ψ2
≤ 2‖X‖ψ2 and ‖X − E[X]‖ψ1

≤ 2‖X‖ψ1 .

Proof. We only consider the sub-Gaussian case; the sub-exponential follows analogously.
If ‖X‖ψ2 ,= ∞ the statements are trivially true. Suppose ‖X‖ψ2 < ∞. By the triangle
inequality we have ‖X − E[X]‖ψ2

≤ ‖X‖ψ2 + ‖E[X]‖ψ2 . Now, observe that ‖E[X]‖ψ2 =
|E[X]| ≤ E|X| ≤ ‖X‖ψ2 . Combine these two inequalities to conclude.

Proposition 6 (Bernstein-type inequality). Let X1, . . . , Xn be independent centered sub-
exponential random variables, and K = maxi ‖Xi‖ψ1. Then, for every a ∈ Rn and every
tgeq0, we have

P

{∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−cmin

{
t2

K2‖a‖22
,

t

K‖a‖∞

})
,

where c > 0 is an absolute constant.

Proof. Without loss of generality, we assume that K = 1 by replacing Xi with Xi/K and t
with t/K. Define S =

∑n
i=1 aiXi. Then by Markov’s inequality we have for every λ > 0,

P {S ≥ t} = P
{
eλS ≥ eλt

}
≤ e−λtE

[
eλS
]

= e−λt
n∏
i=1

E
[
eλaiXi

]
.

If |λ| ≤ c/‖a‖∞, then |λai| ≤ c for all i = 1, . . . , n. So, by Lemma 2,

P {S ≥ t} ≤ e−λt
n∏
i=1

eCλ
2a2i = e−λt+Cλ

2‖a‖22 .

Choosing λ = min{t/(2C‖a‖22), c/‖a‖∞}, we obtain

P {S ≥ t} ≤ exp

(
−cmin

{
t2

4C‖a‖22
,

t

2‖a‖∞

})
.

Repeating the argument for −Xi instead of Xi, we obtain the same bound for P {−S ≥ t}.
The claim follows by combining these two bounds.

2.3 Application: Maxima over finite and structured sets

We discuss several uniform results for finite sets of parameters and sets with special (geo-
metric) properties. This is a first step towards the more general uniform results over infinite
sets of parameters that we will establish in subsequent sections.

We focus on results for sub-Gaussian random variables; similar results (with analogous
proofs) hold for sub-exponential random variables, too.
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Maxima over finite sets

Theorem 5 (Maximum over a finite set). Let X1, . . . , Xn be centered sub-Gaussian random
variables, and K = maxi ‖Xi‖ψ2. Then, there exists an absolute constant C > 0 such that

E
[

max
1≤i≤n

Xi

]
≤ CK

√
log n, and E

[
max

1≤i≤n
|Xi|

]
≤ CK

√
log 2n.

Moreover, for any t > 0,

P
{

max
1≤i≤n

Xi > t

}
≤ ne1−ct2/K2

, and P
{

max
1≤i≤n

|Xi| > t

}
≤ 2ne1−ct2/K2

,

where c > 0 is an absolute constant.

Proof. For every λ > 0, we have by Jensen’s inequality,

E
[

max
1≤i≤n

Xi

]
≤ 1

λ
logE

[
eλmax1≤i≤nXi

]
=

1

λ
logE

[
max

1≤i≤n
eλXi

]
≤ 1

λ
log

(
n∑
i=1

E
[
eλXi

])
.

Whence, by property 9 of centered sub-Gaussian random variables,

E
[

max
1≤i≤n

Xi

]
≤ 1

λ
log

(
n∑
i=1

eCK
2λ2

)
=

log n

λ
+ CK2λ2,

where C > 0 is an absolute constant. Taking λ =
√

(log n)/CK2 and adjusting the constant
C > 0 yields the first inequality in expectation.

The first inequality in probability follows from a simple union bound and property (6)
of sub-Gaussian random variables,

P
{

max
1≤i≤n

Xi > t

}
= P

 ⋃
1≤i≤n

{Xi > t}

 ≤
n∑
i=1

P {Xi > t} ≤ ne1−ct2/K2
,

where c > 0 is an absolute constant.
To prove the two remaining inequalities for max1≤i≤n |Xi| observe that

max
1≤i≤n

|Xi| = max
1≤i≤2n

Xi,

where Xn+i = −Xi for i = 1, . . . , n, and proceed as above.

Remark 7. Note that the random variables need not be independent.

Remark 8. Extending these results to a maximum over an infinite set may be impossible.
For example, if X1, X2, . . . , Xn, . . . is an infinite sequence of i.i.d. N(0, 1) random variables,
then for any n ≥ 1 and for any t > 0,

P
{

max
1≤i≤n

Xi > t

}
= 1− (P {X1 ≤ t})n → 1, n→∞.

However, if X1, X2, . . . , Xn, . . . is an infinite sequence of the same random variable X, we
have for any n ≥ 1 and for any t > 0,

P
{

max
1≤i≤n

Xi > t

}
= 1− P {X1 ≤ t} < 1.

Thus, in the infinite dimensional case the correlation between the Xi’s must play a role.
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Maxima over convex polytopes

In statistical problems we often find that the maximum of random variables over an infinite
set is in fact finite. This is due to the fact that the random variables are not independent
from each other. In the following, we review two examples in which geometric properties of
sets induce dependencies among the random variables.

Definition 3 (Convex Polytope). A convex polytope P is a compact convex set with a finite
number of vertices V(P) called extreme points.

Remark 9. A convex polytope P satisfies P = conv
(
V(P)

)
, where conv

(
V(P)

)
denotes the

convex hull of the vertice of P.

Polytopes arise naturally in many statistical problems. For example, let X ∈ Rd be a
random vector and consider the (infinite) family of random variables

F =
{
θ′X : θ ∈ P

}
,

where P ⊂ Rd is a polytope with n vertices. While the family F is infinite, the maximum
over F can be reduced to a finite maximum:

Lemma 3. Consider a linear form x 7→ c′x, x, c ∈ Rd. Then, for any convex polytope
P ⊂ Rd,

max
x∈P

c′x = max
x∈V(P)

c′x,

where V(P) denotes the set of vertices of P.

Proof. Assume that V(P) = {v1, . . . , vn}. Every x ∈ P = conv
(
V(P)

)
can be written as

the convex combination of elements in V(P). That is, there exist nonnegative numbers
λ1, . . . , λn,

∑n
i=1 λi = 1 such that x =

∑n
i=1 λivi. Thus,

c′x = c′

(
n∑
i=1

λivi

)
≤

n∑
i=1

λic
′vi ≤

n∑
i=1

λi max
x∈V(P)

c′x = max
x∈V(P)

c′x.

Thus, we have

max
x∈P

c′x ≤ max
x∈V(P)

c′x ≤ max
x∈P

c′x,

and hence the two quantities are equal.

An immediate consequence is the following theorem:

Theorem 6 (Maximum over a convex polytope). Let P be a polytope with n vertices
v1, . . . , vn ∈ Rd and let X ∈ Rd be a centered random variable with max1≤i≤n ‖v′iX‖ψ2 ≤ K.
Then, there exists an absolute constant C > 0 such that

E
[
max
θ∈P

θ′X

]
≤ CK

√
log n, and E

[
max
θ∈P
|θ′X|

]
≤ CK

√
log 2n.

11



Moreover, for any t > 0,

P
{

max
θ∈P

θ′X > t

}
≤ ne1−ct2/K2

, and P
{

max
θ∈P
|θ′X| > t

}
≤ 2ne1−ct2/K2

,

where c > 0 is an absolute constant.

Remark 10. The standard example for polytope with a small number of vertices is the

`1-ball in Rd with radius R > 0, i.e.
{
x ∈ Rd :

∑d
i=1 |xi| ≤ R

}
. This polytope has exactly

2d vertices.

Maxima over Euclidean balls

The Euclidean ball in Rd with radius R > 0 is given by

Bd(R) =

{
x ∈ Rd :

d∑
i=1

x2
i ≤ R

}
.

While Bd(R) is not a polytope, we can still control the maximum of a random variable
indexed by Bd(R). This is possible because there exists a finite subset of Bd(R) such that
the maximum over this finite set is of the same order as the maximum over the entire ball.

Definition 4 (ε-nets of Euclidean balls). Fix ε ∈ (0, R]. An ε-net of Bd(R) is a subset
N ⊂ Bd(R) such that for every x ∈ Bd(R) there exists a v ∈ N with d(x, v) ≤ ε.

Lemma 4 (Covering numbers of Euclidean balls). Fix ε ∈ (0, R]. The Euclidean ball Bd(R)

has an ε-net N with respect to the Euclidean distance of cardinality |N | ≤
(
1 + 2R

ε

)d
.

Proof. To show existence of an ε-net N of Bd(R) consider the following iterative procedure:
Choose x1 = 0. For any i ≥ 2, take any xi to be any x ∈ Bd(R) such that |x− xj | > ε for
all j < i. If no such x exists, stop the procedure. Clearly, this will create an ε-net.

Next, we control the size of N . By definition of an ε-net, |x − y| > ε for all x, y ∈ N .
Thus, the Euclidean balls of radii ε/2 centered at the points in N are disjoint. Moreover,⋃

x∈N

{
x+ Bd

(ε
2

)}
⊂ Bd

(
R+

ε

2

)
,

where {x+ Bd(R)} = {x+ y : y ∈ Bd(R)}. Therefore, measuring the volumes, we get

vol
(
Bd
(
R+

ε

2

))
≥ vol

( ⋃
x∈N

{
x+ Bd

(ε
2

)})
=
∑
x∈N

vol
({
x+ Bd

(ε
2

)})
.

Recall that vol
(
x+Bd(R)

)
= vol

(
Bd(R)

)
= Rdvol

(
Bd(1)

)
for all radii R ≥ 0. Hence, above

display implies (
R+

ε

2

)d
≥ |N |

(ε
2

)d
,

and the claim follows.
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Theorem 7 (Maximum over Euclidean balls). Let X ∈ Rd be a random vector such that
maxθ∈Bd(R) ‖θ′X‖ψ2

≤ K. Then, there exists an absolute constant C1 > 0 such that

E
[

max
θ∈Bd(R)

θ′X

]
= E

[
max

θ∈Bd(R)
|θ′X|

]
≤ 2C1K

√
d.

Moreover, for any δ > 0, with probability at least 1− δ, it holds that

max
θ∈Bd(R)

θ′X = max
θ∈Bd(R)

|θ′X| ≤ 2C2K
√
d+ 2C2K

√
log(1/δ),

where C2 > 0 is an absolute constant.

Proof. Set ε = R/2. By Lemma 4 there exists an ε-net N of Bd(R) with respect to the
Euclidean norm with cardinality |N | ≤ 5d. Next, given X, choose θ∗ ∈ Bd(R) for which

max
θ∈Bd(R)

|θ′X| = max
θ∈Bd(R)

θ′X = θ∗′X,

and pick x ∈ N such that ‖θ∗ − x‖2 ≤ ε. Then,

max
θ∈Bd(R)

θ′X ≤ X ′(θ∗ − x) + max
x∈N

X ′x ≤ ε

R

(
max

θ∈Bd(R)
θ′X

)
+ max

v∈N
X ′v.

Thus,

max
θ∈Bd(R)

θ′X ≤ (1− ε/R)−1 max
v∈N

X ′v ≤ 2 max
v∈N

X ′v.

Therefore, by Theorem 5 we get

E
[

max
θ∈Bd(R)

θ′X

]
≤ 2E

[
max
v∈N

X ′v

]
≤ 2CK

√
log |N | ≤ 2C1K

√
(log 5)d ≤ 2C1K

√
d,

for some absolute constant C1 > 0.
The bound with high probability follows because by Theorem 5

P
{

max
θ∈Bd(R)

θ′X > t

}
≤ P

{
2 max
v∈N

v′X > t

}
≤ |N |e1−ct2/K2 ≤ e1+d(log 5)−ct2/K2

.

To conclude, choose t > 0 such that

e1+d(log 5)−ct2/K2 ≤ δ ⇔ t2 ≥ K2/c+ d log(5)K2/c+K2/c log(1/δ)

Hence, it suffices to choose t = 2C2K
√
d+ 2C2K

√
log(1/δ), where C2 > 0 is some absolute

constant.

Remark 11. We expect that K = KR in applications; so that the bound does indeed depend
on the diameter 2R of the `2-ball.

13



3 Symmetrization

In this section we show that instead of analyzing the empirical process

Gnf :=
√
n(Pn − P )f =

1√
n

n∑
i=1

(f(Xi)− Pf)

we can as well analyze the symmetrized empirical process

G◦nf :=
√
nP ◦nf =

1√
n

n∑
i=1

εif(Xi),

where ε1, . . . , εn are independent Rademacher random variables independent of X1, . . . , Xn.
(A Rademacher random variable ε is a random variable taking ±1 with equal probability.)

The advantage of a symmetrized process is that it is easier to control than the original
process. In particular, even though

∑n
i=1(f(Xi)− Pf) may have only low order moments,

the symmetrized process
∑n

i=1 εif(Xi) is sub-Gaussian conditionally on X1, . . . , Xn. There-
fore, we can hope to apply the maximum inequalities derived in the previous section to the
symmetrized process.

3.1 Symmetrization inequalities

The following is the simplest symmetrization inequality.

Theorem 8. Suppose that Pf = 0 for all f ∈ F . Let ε1, . . . , εn be independent Rademacher
random variables independent of X1, . . . , Xn. Let Φ : R+ → R+ be a non-decreasing convex
function, and let µ : F → R be a bounded functional such that {f + µ(f) : f ∈ F} is
pointwise measurable. Then,

E

[
Φ

(
1

2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

)]
≤ E

[
Φ

(∥∥∥∥∥
n∑
i=1

f(Xi)

∥∥∥∥∥
F

)]

≤ E

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εi
(
f(Xi) + µ(f)

)∥∥∥∥∥
F

)]
.

(14)

Proof. We begin with proving the left inequality. We caim that for any disjoint index sets
A,B ⊂ {1, . . . , n},

E

[
Φ

(∥∥∥∥∥∑
i∈A

f(Xi)

∥∥∥∥∥
F

)]
≤ E

[
Φ

(∥∥∥∥∥ ∑
i∈A∪B

f(Xi)

∥∥∥∥∥
F

)]
. (15)

Indeed, by pointwise measurability, there exists a countable subset G ⊂ F such that for any
f ∈ F there exists a sequence gm ∈ G with gm → f pointwise. Then,∥∥∥∥∥∑

i∈A
f(Xi)

∥∥∥∥∥
F

=

∥∥∥∥∥∑
i∈A

f(Xi)

∥∥∥∥∥
G

=

∥∥∥∥∥∑
i∈A

f(Xi) + E

[∑
i∈B

f(Xi)

]∥∥∥∥∥
G

,
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where the last equality holds since Pf = 0 for each f ∈ F . Fix any xi ∈ S, i ∈ A and
observe that by Jensen’s inequality we have∥∥∥∥∥∑

i∈A
f(xi) + E

[∑
i∈B

f(Xi)

]∥∥∥∥∥
G

≤ E

∥∥∥∥∥∑
i∈A

f(xi) +
∑
i∈B

f(Xi)

∥∥∥∥∥
G

 .
Since Φ is non-decreasing and convex above display implies that

Φ

∥∥∥∥∥∑
i∈A

f(xi) + E

[∑
i∈B

f(Xi)

]∥∥∥∥∥
G

 ≤ Φ

E

∥∥∥∥∥∑
i∈A

f(xi) +
∑
i∈B

f(Xi)

∥∥∥∥∥
G


≤ E

Φ

∥∥∥∥∥∑
i∈A

f(xi) +
∑
i∈B

f(Xi)

∥∥∥∥∥
G

 ,
where the second inequality follows from again from Jensen’s inequality (formally, if the
expectation inside Φ does not exist, we apply Jensen’s inequality after truncation, and then
take the limit). Applying Fubini’s theorem and using the fact that

∥∥∑
i∈A∪B f(Xi)

∥∥
G =∥∥∑

i∈A∪B f(Xi)
∥∥
F we obtain the inequality (15).

Now, compute

EX

[
Φ

(∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

)]

= EX

Φ

∥∥∥∥∥
n∑

εi=1

f(Xi)−
n∑

εi=−1

f(Xi)

∥∥∥∥∥
F


≤ 1

2
EX

Φ

2

∥∥∥∥∥
n∑

εi=1

f(Xi)

∥∥∥∥∥
F

+
1

2
EX

Φ

2

∥∥∥∥∥
n∑

εi=−1

f(Xi)

∥∥∥∥∥
F


≤ E

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

f(Xi)

∥∥∥∥∥
F

)]
,

where the first inequality follows by convexity of Φ and the second from inequality (15).
Another application of Fubini’s theorem leads to the left inequality in (14).

We now turn to the right inequality in (14). Let Xn+1, . . . , X2n be an independent copy
of X1, . . . , Xn. Then, using the same argument used to prove inequality (15), we have

E

[
Φ

(∥∥∥∥∥
n∑
i=1

f(Xi)

∥∥∥∥∥
F

)]
= E

[
Φ

(∥∥∥∥∥
n∑
i=1

(
f(Xi)− E[f(Xn+i)]

)∥∥∥∥∥
F

)]

≤ E

[
Φ

(∥∥∥∥∥
n∑
i=1

(
f(Xi)− f(Xn+i)

)∥∥∥∥∥
F

)]
.

(16)
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Because (Xi, Xn+i)
d
= (Xn+i, Xi) for each i = 1, . . . , n, and the (X1, Xn+1), . . . , (Xn, X2n)

are independent the last expression in (16) is equal to

E

[
Φ

(∥∥∥∥∥
n∑
i=1

εi
(
f(Xi)− f(Xn+i)

)∥∥∥∥∥
F

)]

≤ 1

2
E

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εi
(
f(Xi) + µ(f)

)∥∥∥∥∥
F

)]
+

1

2
E

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εi
(
f(Xn+i) + µ(f)

)∥∥∥∥∥
F

)]

= E

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εi
(
f(Xi) + µ(f)

)∥∥∥∥∥
F

)]
.

This completes the proof.

Remark 12. We will often use the symmetrization inequality with Φ(x) = xp for some
p ≥ 1 and µ(f) = Pf , when F is not P -centered. In this case,

1

2p
E

[∥∥∥∥∥
n∑
i=1

εi(f(Xi)− Pf)

∥∥∥∥∥
p

F

]
≤ E

[∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
p

F

]
≤ 2pE

[∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
p

F

]
.

There is an analogous symmetrization inequality for probabilities.

Theorem 9. Let ε1, . . . , εn be independent Rademacher random variables independent of
X1, . . . , Xn. Let µ : F → R be a bounded functional such that {f + µ(f) : f ∈ F} is
pointwise measurable. Then, for every x > 0,

βn(x)P

{∥∥∥∥∥
n∑
i=1

f(Xi)

∥∥∥∥∥
F

> x

}
≤ 2P

{
4

∥∥∥∥∥
n∑
i=1

εi
(
f(Xi) + µ(f)

)∥∥∥∥∥ > x

}
,

where βn(x) is any constant such that βn(x) ≤ inff∈F P {|
∑n

i=1 f(Xi) < x/2|}. In particu-
lar, if Pf = 0 for all f ∈ F , we may take βn(x) = 1− (4n/x2) supf∈F Pf

2.

Proof. The second assertion follows from Markov’s inequality. We shall prove the first
assertion only. Let Xn+1, . . . , X2n be an independent copy of X1, . . . , Xn. Define the event
En =

{
‖
∑n

i=1 f(Xn+i)‖F > x
}

. Note that En is independent of X1, . . . , Xn. If En holds

true, then there exists a function f̃ ∈ F such that
∣∣∣∑n

i=1 f̃(Xn+i)
∣∣∣ > x. For this f̃ , we have

βn(x) ≤ P

{∣∣∣∣∣
n∑
i=1

f̃(Xi)

∣∣∣∣∣ < x

2
| Xn+1, . . . , X2n, En

}

≤ P

{∣∣∣∣∣
n∑
i=1

(
f̃(Xi)− f̃(Xn+i)

)∣∣∣∣∣ > x

2
| Xn+1, . . . , X2n, En

}

≤ P

{∥∥∥∥∥
n∑
i=1

(
f(Xi)− f(Xn+i)

)∥∥∥∥∥
F

>
x

2
| Xn+1, . . . , X2n, En

}
.
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The far left and right hand sides in above display do not depend on f̃ . Integrate the two
sides out with respect to Xn+1, . . . , X2n over the set defined by En. We obtain

βn(x)P

{∥∥∥∥∥
n∑
i=1

f(Xn+i)

∥∥∥∥∥
F

> x

}
≤ P

{∥∥∥∥∥
n∑
i=1

(
f(Xi)− f(Xn+i)

)∥∥∥∥∥
F

>
x

2

}
.

Because (Xi, Xn+i)
d
= (Xn+i, Xi) for each i = 1, . . . , n, and the (X1, Xn+1), . . . , (Xn, X2n)

are independent the last expression is equal to

P

{∥∥∥∥∥
n∑
i=1

εi
(
f(Xi)− f(Xn+i)

)∥∥∥∥∥
F

>
x

2

}

≤ P

{∥∥∥∥∥
n∑
i=1

εi
(
f(Xi)− µ(f)

)∥∥∥∥∥
F

>
x

4

}
+ P

{∥∥∥∥∥
n∑
i=1

εi
(
f(Xn+i)− µ(f)

)∥∥∥∥∥
F

>
x

4

}

≤ 2P

{∥∥∥∥∥
n∑
i=1

εi
(
f(Xi)− µ(f)

)∥∥∥∥∥
F

>
x

4

}
.

This completes the proof.

3.2 The contraction principle

A function ϕ : R→ R is called a contraction if |ϕ(x)− ϕ(y)| ≤ |x− y| for all x, y ∈ R.

Theorem 10. Let Φ : R+ → R+ be a nondecreasing convex function. Let T ⊂ Rn be a
non-empty and bounded, and let ε1, . . . , εn be independent Rademacher random variables.
Let ϕi : R→ R, 1 ≤ i ≤ n, be a contraction with ϕ(0) = 0. Then,

E

[
Φ

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

ϕi(ti)εi

∣∣∣∣∣
)]
≤ E

[
Φ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

tiεi

∣∣∣∣∣
)]

.

Proof. See Ledoux and Talagrand (1996), Theorem 4.12.

We have the following simple but important corollary.

Corollary 1. Let σ2 > 0 be a positive constant such that σ2 ≥ supf∈F Pf
2. Let ε1, . . . , εn

be independent Rademacher random variables independent of X1, . . . , Xn. Then,

E

[∥∥∥∥∥
n∑
i=1

f2(Xi)

∥∥∥∥∥
F

]
≤ nσ2 + 8E

[
max

1≤i≤n
F (Xi)

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

]
.

Proof. By the triangle inequality,∣∣∣∣∣
n∑
i=1

f2(Xi)

∣∣∣∣∣ ≤ nPf2 +

∣∣∣∣∣
n∑
i=1

(
f2(Xi)− Pf2

)∣∣∣∣∣ .
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Taking the supremum over f ∈ F and applying the symmetrization inequality (Theorem 8),
we have

E

[∥∥∥∥∥
n∑
i=1

f2(Xi)

∥∥∥∥∥
F

]
≤ nσ2 + 2E

[∥∥∥∥∥
n∑
i=1

εif
2(Xi)

∥∥∥∥∥
F

]
.

Fix X1, . . . , Xn and let M = max1≤i≤n F (Xi). Define the function ϕ : R→ R by

ϕ(x) =


M2 if x > M

x2 if −M ≤ x ≤M
M2 if x < −M.

Then, ϕ is Lipschitz continuous with Lipschitz constant bounded by 2M , that is

|ϕ(x)− ϕ(y)| ≤ 2M |x− y|, ∀x, y ∈ R.

Hence, by the contraction principle (Theorem 10) applied to ϕ/(2M) we have

E

[∥∥∥∥∥
n∑
i=1

εif
2(Xi)

∥∥∥∥∥
F

| X1, . . . , Xn

]
≤ 4ME

[∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

| X1, . . . , Xn

]
.

Integrate out over X1, . . . , Xn to conclude.

3.3 Lévy’s and Ottaviani’s inequalities

In this subsection, let Sk(f) denote the partial sum

Sk(f) =
k∑
i=1

f(Xi), k = 1, . . . , n.

Proposition 7 (Lévy’s inequalities). Let X1, . . . , Xn be independent random variables such
that f(Xi), 1 ≤ i ≤ n are symmetric. Then, for every t > 0,

P
{

max
1≤k≤n

‖Sk‖F > t

}
≤ 2P {‖Sn‖F > t} , (17)

P

{
max

1≤i≤n
sup
f∈F
|f(Xi)| > t

}
≤ 2P {‖Sn‖F > t} . (18)

Moreover, for every 0 < p <∞,

E
[

max
1≤k≤n

‖Sk‖pF

]
≤ 2E

[
‖Sn‖pF

]
and E

[
max

1≤i≤n
sup
f∈F
|f(Xi)|p

]
≤ 2E

[
‖Sn‖pF

]
. (19)

Proof. We drop the sub-index F from the norms if no confusion may arise. Consider the
sets

Ak := {‖Si‖ ≤ t, for 1 ≤ i ≤ k − 1, ‖Sk‖ > t} , k = 1, . . . , n.

18



Clearly, Ak ∩ Aj = ∅ for all k 6= j, and
⋃n
k=1Ak = {max1≤k≤n ‖Sk‖ > t}. (Ak is the event

that “the random walk Si leaves the ball of radius t for the first time at time k”.) For each
k ≤ n, define

Skn(f) := Sk(f)− f(Xk+1)− · · · − f(Xn).

Note that by symmetry and independence,(
f(X1), . . . , f(Xn)

) d
=
(
f(X1), . . . , f(Xk),−f(Xk+1), . . . ,−f(Xn)

)
.

Thus, since Ak depends only on X1, . . . , Xk we have

P {Ak ∩ {‖Sn‖ > t}} = P
{
Ak ∩ {‖Skn‖ > t}

}
.

However, we also have

Ak = (Ak ∩ {‖Sn‖} > t}) ∪
(
Ak ∩ {‖Skn‖} > t}

)
,

since otherwise there would exist ω ∈ Ak such that 2‖Sk(ω)‖ = ‖Sn(ω) + Skn(ω)‖ ≤ 2t, a
contradiction with the definition of Ak. The last two displayed identities imply that

P {Ak} ≤ 2P
{
Ak ∩ ‖Sn‖ > t}

}
, k = 1, . . . , n.

Therefore,

P
{

max
1≤k≤n

‖Sk‖ > t

}
=

n∑
i=1

P {Ak} ≤ 2
n∑
k=1

P
{
Ak ∩ {‖Sn‖ > t}

}
≤ 2P {‖Sn‖ > t} .

This proves the first inequality. The second inequality is proved in the same way, we only
have to redefine the Ak as

Ak :=

{
sup
f∈F
|f(Xi)| ≤ t, for 1 ≤ i ≤ k − 1, sup

f∈F
|f(Xk)| > t

}
, k = 1, . . . , n,

and Skn(f) as

Skn(f) := −f(X1)− · · · − f(Xk−1) + f(Xk)− f(Xk+1) · · · − f(Xn).

The statements about the expected values follow from (17) and (18) using the formula

E
[
|X|p

]
=

∫ ∞
0

ptp−1P {|X| > t} dt.

This completes the proof.

Lévy’s inequality applies only to the symmetric (or symmetrized) empirical processes. A
slightly weaker inequality exists for empirical processes which are not necessarily symmetric.
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Proposition 8 (Ottaviani’s inequality). Let X1, . . . , Xn be independent random variables.
Then, for all u, v > 0,

P
{

max
1≤k≤n

‖Sk‖F > u+ v

}
≤ P {‖Sn‖F > u}

1−maxk≤n P {‖Sn − Sk‖F > v}
, (20)

and, for all t ≥ 0,

P
{

max
1≤k≤n

‖Sk‖F > t

}
≤ 3 max

k≤n
P
{
‖Sk‖F >

t

3

}
. (21)

Proof. We drop the sub-index F from the norms if no confusion may arise. Consider the
sets

Ak := {‖Si‖ ≤ u+ v, for 1 ≤ i ≤ k − 1, ‖Sk‖ > u+ v} , k = 1, . . . , n.

Clearly, Ak ∩Aj = ∅ for all k 6= j, and
⋃n
k=1Ak = {max1≤k≤n ‖Sk‖ > u+ v}. Therefore,

P {‖Sn‖ > u} ≥ P
{
‖Sn‖ > u, max

1≤k≤n
‖Sk‖ > u+ v

}
≥

n∑
k=1

P
{
Ak ∩ {‖Sn − Sk‖ ≤ v}

}
=

n∑
k=1

P {Ak}P {‖Sn − Sk‖ ≤ v}

≥
(

1−max
k≤n

P {‖Sn − Sk‖ > v}
)
P
{

max
1≤k≤n

‖Sk‖ > u+ v

}
.

This proves inequality (20).
We now prove inequality (21). Note that if P {‖Sk‖ > t/3} ≥ 1/3, inequality (21) is

trivially satisfied. Therefore, it suffices to consider P {‖Sk‖ > t/3} < 1/3. Taking u = t/3
and v = 2t/3 in inequality (20), we have

P
{

max
1≤k≤n

‖Sk‖ > t

}
≤ P {‖Sn‖ > t/3}

1−maxk≤n P {‖Sn − Sk‖ > 2t/3}

≤ maxk≤n P {‖Sk‖ > t/3}
1− 2 maxk≤n P {‖Sk‖ > t/3}

≤ 3 max
k≤n

P {‖Sk‖ > t/3} .

This concludes the proof.

3.4 Application: Weak Glivenko Cantelli Theorem

To illustrate the usefulness of the symmetrization technique we prove the (weak) classical
Glivenko-Cantelli theorem and introduce the important concept of conditional Rademacher
averages. We provide two proofs: The first proof exploits the sub-Gaussianity of condi-
tional Rademacher averages, while the second proofe utilizes the symmetry of conditional
Radmacher averages via Lévy’s inequality.
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Theorem 11 (Weak Glivenko-Cantelli). Let X1, Xn, . . . ∈ R be i.i.d. random variables
with common distribution function F . Then,

sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣ P−→ 0 as n −→∞.

First Proof. By the symmetrization inequality (Theorem 8) we have

E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣
]
≤ 2E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

εi1(−∞,x)(Xi)

∣∣∣∣∣
]
.

Next, we reduce the problem of finding the supremum over the real line to finding the
maximum over a finite set. To this end, fix X1, . . . , Xn and note that the set

Θ =
{(

1(−∞,x)(X1), . . . , 1(−∞,x)(Xn)
)
∈ {0, 1}n : x ∈ R

}
contains at most |Θ| ≤ 2n distinct vectors in {0, 1}n. Define ε = (ε1, . . . , εn). Then,

E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

εi1(−∞,x)(Xi)

∣∣∣∣∣ | X1, . . . , Xn

]
= n−1E

[
max
θ∈Θ

∣∣θ′ε∣∣ | X1, . . . , Xn

]
.

By Theorem 5 there exists an absolute constant C > 0 (which is independent of the Xi’s,
because θ is bounded!) such that

n−1E

[
max
θ∈Θ

∣∣θ′ε∣∣ | X1, . . . , Xn

]
≤ C√

n
.

Integrating out with respect to X1, . . . , Xn, we obtain

E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣
]
≤ C√

n
−→ 0 as n −→∞.

This proofs the assertion.

Second Proof. By the symmetrization inequality (Theorem 8) we have

E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣
]
≤ 2E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

εi1(−∞,x)(Xi)

∣∣∣∣∣
]
.

Next, we again reduce the problem of finding the supremum over the real line to finding the
maximum over a finite set. Fix X1, . . . , Xn and let σ be a permutation of {1, . . . , n} such
that Xσ(1) ≤ . . . ≤ Xσ(n). Then,

sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣ 1n
k∑
i=1

εσ(i)

∣∣∣∣∣ .
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Conditionally on X1, . . . , Xn, the permuted Rademacher variables εσ(1), . . . , εσ(n) are still
independent, symmetric Rademacher random variables. Thus, Lévy’s inequality (Theo-
rem (7)) implies that

E

[
max

1≤k≤n

∣∣∣∣∣ 1n
k∑
i=1

εσ(i)

∣∣∣∣∣ | X1, . . . , Xn

]

≤ 2E

[∣∣∣∣∣ 1n
n∑
i=1

εσ(i)

∣∣∣∣∣ | X1, . . . , Xn

]

= 2E

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ | X1, . . . , Xn

]

≤ 2√
n
,

where the last inequality follows from Jensen’s inequality. Integrating out the last chain of
inequalities with respect to X1, . . . , Xn, we have

E

[
sup
x∈R

∣∣∣∣∣ 1n
n∑
i=1

1(−∞,x)(Xi)− F (x)

∣∣∣∣∣
]
≤ 4√

n
−→ 0 as n −→∞.
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4 Maximal inequalities

This section is concerned with bounding moments of the supremum of an empirical process:

E

[∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
p

F

]
, 1 ≤ p ≤ ∞.

In contrast to previous sections, we now finally address the problem of how to bound the
supremum when the function class F is infinite. To do so, we first consider the more general
situation of bounding the supremum of a generic stochastic process indexed by a semi-metric
space. We then apply these general results to empirical processes.

4.1 Orlicz norms

Definition 5. Let ψ be a nondecreasing, convex function with ψ(0) = 0. The associated
Orlicz norm of a random variable X is defined as

‖X‖ψ = inf

{
C > 0 : E

[
ψ

(
|X|
C

)]
≤ 1

}
.

We set the infimum over the empty set equal to ∞.

Remark 13. For ψ(x) = xp, p ≥ 1 the associated Orlicz norm reduces to the Lp-norm

‖X‖p = E
[
|X|p

]1/p
. However, we are more interested in functions given by ψp(x) = ex

p − 1
for p ≥ 1, which give much more weight to the tails of X. Clearly, the sub-Gaussian ψ2-
norm (Definition 1) and the sub-exponential ψ1-norm (Definition 2) belong to this class of
Orlicz norms.

Lemma 5. Let X be a random variable such that 0 < ‖X‖ψ < ∞. Then we have
E
[
ψ(|X|/‖X‖ψ)

]
= 1.

Proof. Let (cm)m≥1 be a sequence of positive constants such that E
[
ψ(|X|/cm)

]
≤ 1 and

cm ↓ ‖X‖ψ. By the monotone convergence theorem,

E
[
ψ

(
|X|
‖X‖ψ

)]
= E

[
lim
m→∞

ψ

(
|X|
cm

)]
= lim

m→∞
E
[
ψ

(
|X|
cm

)]
≤ 1.

Thus, ‖X‖ψ ∈ {C > 0 : E [ψ (|X|/C)] ≤ 1}. Since ψ is nondecreasing, it follows that
E [ψ (|X|/‖X‖ψ)] = 1.

Proposition 9. The Orlicz norm ‖ · ‖ψ is a norm on the space of all random variables X
(up to almost sure equivalences) such that ‖X‖ψ <∞.

Proof. First we show absolute homogeneity. Let a ∈ R be arbitrary. By Lemma 5,

E
[
ψ

(
|a||X|
‖aX‖ψ

)]
= E

[
ψ

(
|aX|
‖aX‖ψ

)]
= 1 = E

[
ψ

(
|a||X|
|a|‖X‖ψ

)]
.

Comparing the far left with the far right side in above display, we conclude that ‖aX‖ψ =
|a|‖X‖ψ for all a ∈ R.
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Second, we show positive definiteness. Suppose that ‖X‖ψ = 0. By convexity of ψ and
Jensen’s inequality, for all c > 0,

ψ (E[|X|]/c) ≤ E [ψ(|X|/c)] ≤ 1.

But this can only hold true if E[|X|] = 0. This implies that X = 0 almost surely.
Third, we show the triangle inequality. Let Xi, i = 1, 2, be two random variables such

that ci := ‖Xi‖ψ < ∞, i = 1, 2. Define λ := c1/(c1 + c2). By monotonicity and convexity
of ψ,

E
[
ψ

(
|X1 +X2|
c1 + c2

)]
≤ E

[
ψ

(
|X1|+ |X2|
c1 + c2

)]
= E

[
ψ

(
λ
|X1|
c1

+ (1− λ)
|X2|
c2

)]
≤ λE

[
ψ

(
|X1|
c1

)]
+ (1− λ)E

[
ψ

(
|X2|
c2

)]
= 1,

where the last equality follows by Lemma 5. This shows that ‖X1 + X2‖ψ ≤ ‖X1‖ψ +
‖X2‖ψ.

Proposition 10. Let X be a random variable such that 0 < ‖X‖ψ < ∞. Consider a
sequence of random variables (Xm)m≥1 such that Xm ↑ X almost surely. Then, ‖Xm‖ψ ↑
‖X‖ψ.

Proof. Since by monotonicity of ψ, Xm ≤ X, for all m ≥ 1, implies that ‖Xm‖ψ ≤ ‖X‖ψ,
for all m ≥ 1. Hence, since ‖X‖ψ < ∞ there exists a constant 0 ≤ c ≤ ‖X‖ψ such that
‖Xm‖ ↑ c. Suppose that c = 0. Then, Xm = 0 almost surely for all m ≥ and thus X = 0
almost surely. Then ‖X‖ψ = 0, i.e. ‖Xm‖ψ ↑ ‖X‖ψ. Now suppose that c > 0. By the
monotone convergence theorem limn→∞ E [ψ (|Xm|/c)] = E [ψ (|X|/c)]. But that implies
‖X‖ψ ≤ c. Hence, ‖X‖ψ = c and ‖Xm‖ψ ↑ ‖X‖ψ.

The reason why Orlicz norms play an important role in empirical process theory lies in
the following theorem.

Theorem 12. Let ψ be a convex, nondecreasing, nonzero function with ψ(0) = 0 and, for
some constant c,

lim sup
x,y→∞

ψ(x)ψ(y)

ψ(cxy)
<∞.

Then, for any random variables X1, . . . , Xm,∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ,

for a constant K depending only on ψ.

Proof. See van der Vaart and Wellner (1996), Lemma 2.2.2.
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Remark 14. For our purposes the value of the constant K is irrelevant. The important
conclusion is that the inverse of the ψ-function determines the size of the ψ-norm of a
maximum in comparison to the ψ-norm of the individual term. For functions ψp(x) = ex

p−1
the growth is at most logarithmic, since

ψ−1
p (m) =

(
log(1 +m)

)1/p
.

This is a huge improvement over bounds for general Lp-norms based on ψ(x) = xp, for
which ψ−1(m) = m1/p.

Remark 15. The bound xp ≤ ex
p − 1 for x ≥ 0 implies that ‖X‖p ≤ ‖X‖ψp for each p.

Now, revisit the bounds obtained in Section 2.3.

Remark 16. Any Orlicz norm can be used to obtain an estimate of the tail of a distribution.
By Markov’s inequality, for any t > 0,

P {|X| > t} = P
{
ψ

(
|X|
‖X‖ψ

)
> ψ

(
t

‖X‖ψ

)}
≤
(
ψ

(
t

‖X‖ψ

))−1

.

For ψp(x) = ex
p−1 this leads to tail estimates of order exp (−Cxp) for any random variable

with a finite ψp-norm. Conversely, an exponential tail bound of this type shows that ‖X‖ψp
is finite. Now, revisit Theorems 3 and 4 on the equivalent characterizations of sub-Gaussian
and sub-exponential random variables, respectively.

4.2 Maximal inequalities based on covering numbers

Theorem 12 is useless in the case of a maximum over infinitely many variables. In this
subsection we show how such a case can be handled by breaking up the maximum in little
chunks and repeatedly applying Theorem 12. This technique is known as chaining.

Definition 6 (Stochastic process). A collection of random variables X = {X(t) : t ∈ T}
on (Ω,A,P) with values in R is called a stochastic process with index set T .

Remark 17. For each ω ∈ Ω, the map t 7→ X(t, ω) is called a sample path.

Definition 7 (Separable stochastic process). Let (T, d) be a semi-metric space. A stochastic
process X = {X(t) : t ∈ T} is called separable if there exists a null set N and a countable
subset T0 ⊂ T such that for every open set G ⊂ T and every closed set F ⊂ R,

{X(t) ∈ F : t ∈ G ∩ T0} \ {X(t) ∈ F : t ∈ G} ⊂ N.

Remark 18. The notion of a separable stochastic process allows us to avoid measurability
problems. In particular, for a separable stochastic process X, supt∈T |X(t)| is measurable
since the supremum over T reduces to the supremum over a countable subset of T .

Definition 8 (ε-net). Let (T, d) be a semi-metric space and ε > 0. An ε-net of T is a subset
Tε ⊂ T with maximal cardinality such that for all s, t ∈ Tε with s 6= t, one has d(s, t) > ε
(i.e. every pair of distinct elements of Tδ is ε-separated).
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Definition 9 (Packing number). Let (T, d) be a semi-metric space and ε > 0. The packing
number D(T, d, ε) is defined as the maximal number of ε-separated points in T .

Remark 19. In other words, the packing number D(T, d, ε) of T is the maximal number of
disjoint closed balls of radius ε/2 that can be packed into T .

Definition 10 (Covering number). Let (T, d) be a semi-metric space and ε > 0. The
covering number N(T, d, ε) of T is defined as the minimal number of closed balls of radius
ε that are needed to cover T .

Remark 20. Note that the map ε 7→ N(T, d, ε) is non-increasing, and T is totally bounded
if and only if N(T, d, ε) <∞ for all ε > 0. The covering number N(T, d, ε) is not monotonic
in T in the sense that S ⊂ T does not necessarily imply that N(S, d, ε) ≤ N(T, d, ε). This
is because a net of T may not not be a net of S since a point in the net of T may lie outside
of S.

Lemma 6 (Equivalence of covering and packing numbers). Let (T, d) be a semi-metric
space and ε > 0. Then,

D(T, d, 2ε) ≤ N(T, d, ε) ≤ D(T, d, ε).

Proof. Let {x1, . . . , xD} be a 2ε-separated set and {x′1, . . . , x′N} be an ε-net. Then we can
assign to each point xj a point x′k with d(xj , x

′
k) ≤ ε. This assignment is unique since the

points xj are 2ε-separated. Indeed, the assumption that two points xj , xi, j 6= i, can be
assigned to the same point x′k would lead to a contradiction d(xj , xi) ≤ d(xj , x

′
k)+d(xi, x

′
k) ≤

2ε. Thus, it follows that D(T, d, 2ε) ≤ N(T, d, ε).
Now, let {x1, . . . , xD} be a maximally ε-separated set. Then it is also a ε-net. Indeed,

if there was a point x that is not covered by a ball with radius ε and center xj for any
j ∈ {1, . . . , D}, then d(x, xj) > ε for all j ∈ {1, . . . , D}. But this would contradict the
maximality. Thus, it follows that N(T, d, ε) ≤ D(T, d, ε).

The following is the main theorem of this section.

Theorem 13. Let (T, d) be a semi-metric space, let X = {X(t) : t ∈ T} be a separable
stochastic process, and let ψ be function satisfying the conditions of Theorem 12 such that

‖X(s)−X(t)‖ψ ≤ Cd(s, t), ∀s, t ∈ T, (22)

where C > 0 is some constant. Then, for any δ > 0 and 0 < η ≤ δ,∥∥∥∥∥ sup
d(s,t)≤δ

∣∣X(s)−X(t)
∣∣∥∥∥∥∥
ψ

≤ K
[∫ η

0
ψ−1

(
D(T, d, ε)

)
dε+ δψ−1

(
D2(T, η, d)

)]
, (23)

for a constant K > 0 depending on ψ and C only.

Corollary 2. The constant K > 0 can be chosen such that∥∥∥∥∥ sup
s,t∈T

∣∣X(s)−X(t)
∣∣∥∥∥∥∥
ψ

≤ K
∫ diam(T )

0
ψ−1

(
D(T, d, ε)

)
dε.
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Definition 11 (Sub-Gaussian stochastic process). Let (T, d) be a semi-metric space. A
stochastic process {X(t) : t ∈ T} is called sub-Gaussian with respect to the semi-metric d if
there exist absolute constants C, c > 0 such that

P
(
|X(s)−X(t)| > x

)
≤ Ce−cx2/d2(s,t), ∀s, t ∈ T, x > 0.

Remark 21. Note that by Definition 5 and the equivalent characterizations of sub-Gaussian
random variables in eq. (6), above tail bound is equivalent to

∥∥X(s) − X(t)‖ψ2 ≤ Cd(s, t)
for all s, t ∈ T and some constant C > 0.

Corollary 3. Let {X(t) : t ∈ T} be a separable sub-Gaussian process. Then for every
δ > 0,

E

[
sup

d(s,t)≤δ

∣∣X(s)−X(t)
∣∣] ≤ K ∫ δ

0

√
logD(T, d, ε)dε,

for a universal constant K > 0. In particular, for any t0,

E
[
sup
t∈T
|X(t)|

]
≤ E

[
|X(t0)|

]
+K

∫ ∞
0

√
logD(T, d, ε)dε.

Proof of Theorem 13. Without loss of generality, we can assume that the entropy integral
on the right hand side of (23) is finite, since otherwise the statement is trivially true.
By assumption, X = {X(t) : t ∈ T} is a separable stochastic process; therefore (see
Definition 7) there exists a countable subset S ⊂ T such that

∥∥∥∥∥ sup
d(s,t)≤δ

∣∣X(s)−X(t)
∣∣∥∥∥∥∥
ψ

=

∥∥∥∥∥∥∥ sup
s,t∈S

d(s,t)≤δ

∣∣X(s)−X(t)
∣∣
∥∥∥∥∥∥∥
ψ

.

By the monotone convergence theorem (Proposition 10) we can now assume that S is finite,
say |S| <∞.

We iteratively construct a collection of subsets of S as follows: Fix η ≤ δ. Let S0 be a
η-net of S. For j ≥ 1, set ηj = η2−j and let Sj be a ηj-net of S such that Sj−1 ⊂ Sj . Stop if
no such set Sj can be found. (Indeed, since S is finite, this procedure will stop eventually.)
We make the following three observations: First, the sets are nested and exhaust S, i.e.
there exists an integer J <∞ such that

S0 ⊂ S1 ⊂ . . . ⊂ SJ−1 ⊂ SJ = S.

Second, for all j ≥ 0, the size of each set is no larger than the corresponding packing
number, i.e.

|Sj | ≤ D(T, d, ηj). (24)

Third, for all j ≥ 0, there exist mappings πj : S → Sj such that

d(s, πjs) ≤ ηj ∀s ∈ S, (25)
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and since Sj ⊂ Sj+1, we may choose the mappings such that

πj+1Sj = Sj ∀j ≥ 0. (26)

Now, compute∥∥∥∥∥∥∥ sup
s,t∈S

d(s,t)≤δ

|X(s)−X(t)|

∥∥∥∥∥∥∥
ψ

≤

∥∥∥∥∥∥∥ sup
s,t∈S

d(s,t)≤δ

∣∣∣X(s)−X(π0s)−
(
X(t)−X(π0t)

)∣∣∣
∥∥∥∥∥∥∥
ψ

+

∥∥∥∥∥∥∥ sup
s,t∈S

d(s,t)≤δ

∣∣∣X(π0s)−X(π0t)
)∣∣∣
∥∥∥∥∥∥∥
ψ

.

(27)

We first bound the first time term on the right of (27). Note that

sup
s,t∈S

d(s,t)≤δ

∣∣∣X(s)−X(π0s)−
(
X(t)−X(π0t)

)∣∣∣
= sup

s,t∈S
d(s,t)≤δ

∣∣∣∣∣∣
J−1∑
j=0

(
X(πj+1s)−X(πjs)

)
−
J−1∑
j=0

(
X(πj+1t)−X(πjt)

)∣∣∣∣∣∣
≤ 2

J−1∑
j=0

sup
s∈S

∣∣∣X(πj+1s)−X(πjs)
∣∣∣.

(28)

By construction of the sets Sj and the projections πj (see (24)-(26)) the supremum in the
last line in above display is taken only over at most D(T, d, ηj+1) elements. Moreover,
by (25), for all s ∈ S,

d
(
πj+1s, πjs

)
≤ d
(
πj+1s, s) + d

(
s, πjs

)
≤ ηj+1 + ηj ≤ 3ηj+1.

Thus, taking the ψ-norm over both sides of inequality (28) and applying Theorem 12 to the
right side, we have∥∥∥∥∥∥∥ sup

s,t∈S
d(s,t)≤δ

∣∣∣X(s)−X(π0s)−
(
X(t)−X(π0t)

)∣∣∣
∥∥∥∥∥∥∥
ψ

≤ 6KC
J−1∑
j=0

ψ−1
(
D(T, d, ηj+1)

)
ηj+1

≤ 24KC

∫ η

0
ψ−1

(
D(T, d, ε)

)
dε. (29)

We now bound the second term on the right side of (27). Note that sup
{∣∣X(π0s) −

X(π0t)
∣∣ : s, t ∈ S, d(s, t) ≤ δ

}
is a supremum over at most D2(T, d, η) distinct elements

which are at most 3δ apart (since be the triangle inequality d(π0s, π0t) ≤ d(s, π0s) +
d(t, π0t) + d(s, t) ≤ 2η + δ ≤ 3δ). Thus, by Theorem 12, we have∥∥∥∥∥∥∥ sup

s,t∈S
d(s,t)≤δ

∣∣X(π0s)−X(π0t)
∣∣
∥∥∥∥∥∥∥
ψ

≤ 3KCψ−1
(
D2(T, d, η)

)
δ. (30)
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The proof is completed by combining the upper bounds in (29) and (30) and choosing
a large enough constant K > 0.

Proof of Corollary 2. Apply Theorem 13 with η = δ = diam(T ) and note that D(T, d, η) =
1. Then, δψ−1

(
D2(T, d, η)

)
= diam(T )ψ−1(1). Since ψ−1 is a decreasing function, this term

can be absorbed into the integral by increasing the constant K.

Proof of Corollary 3. Apply Theorem 13 with ψ2(x) = ex
2 − 1 and η = δ. Note that

ψ−1
2 (m) =

√
log(1 +m). To conclude, adjust the constants.

4.3 Application: Rademacher averages and empirical processes

In this subsection we apply the maximal inequality from Theorem 13 to empirical processes.
We begin with a result on simple Rademacher averages and then move to more general
function classes. These results will be instrumental in showing that a function class F is
Glivenko-Cantelli and/ or Donsker.

A maximal inequality for Rademacher averages

Proposition 11. Let T be a nonempty and bounded subset of Rn with norm |t|n,2 :=(
n−1

∑n
i=1 t

2
i

)1/2
. Let ε1, . . . , εn be independent Rademacher random variables. Then,∥∥∥∥∥sup
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣
∥∥∥∥∥
ψ2

≤ C
∫ σn

0

√
logN(T ∪ {0}, | · |n,2, ε)dε,

where σn := supt∈T |t|n,2 and C > 0 is an absolute constant.

Proof. Let T̃ = T ∪ {0}. Define the stochastic process

X(t) :=
1√
n

n∑
i=1

εiti, t = (t1, . . . , tn)′ ∈ T̃ .

Rademacher random variables are sub-Gaussian (see Remark 4). Hence, we shall apply
Theorem 3 with ψ = ψ2. Recall that ψ−1(m) =

√
log(1 +m) and by Proposition 2,

‖X(t)−X(s)‖ψ2 ≤ C|t− s|n,2, ∀s, t ∈ T̃ ,

where C > 0 is some absolute constant. Thus, X satisfies the Lipschitz continuity condi-
tion (22) with d(s, t) := |t− s|n,2. By Theorem 13 with t0 = 0∥∥∥∥∥sup

t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣
∥∥∥∥∥
ψ2

≤ C
∫ D

0

√
log(1 +N(T̃ , d, ε)dε,

where D is the diameter of T̃ .
Note that N(T̃ , d, ε) ≥ 2 for 0 < ε < D/2. Since log(1 + m) ≤ 2 logm for m ≥ 2, we

have ∫ D

0

√
log
(
1 +N(T̃ , d, ε)

)
dε ≤ 2

∫ D/2

0

√
log
(
1 +N(T̃ , d, ε)

)
dε
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≤ 2
√

2

∫ D/2

0

√
logN(T̃ , d, ε)dε,

A change of variables leads to the conclusion.

Remark 22. When T is finite, we have N(T ∪ {0}, | · |n,2, ε) ≤ 1 + Card(T ) for any ε > 0.
In this case, above result simplifies to∥∥∥∥∥sup

t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

εiti

∣∣∣∣∣
∥∥∥∥∥
ψ2

≤ Cσn
√

log(1 + Card(T )). (31)

The right hand side is similar to the bounds that we have derived in Section 2.3. However,
the statement here is stronger, since it provides an upper bound on the ψ2-norm not the
`2-norm.

A maximal inequality for empirical processes

Proposition 11 combined with a symmetrization argument can be used to derive maximal
inequalities for empirical processes. We give two examples. Define the uniform entropy
integral as

J(δ,F , F ) =

∫ δ

0
sup
Q

√
1 + logN(F , ‖ · ‖Q,2, ε‖F‖Q,2)dε,

where the supremum is taken over all finitely discrete distributions.

Theorem 14. Let 1 ≤ p < ∞. Suppose that F ∈ Lp∨2(P ). Then there exists a constant
Cp depending only on p such that

E

[∥∥∥∥∥ 1√
n

n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
p

F

]1/p

≤ CpJ(1,F , F )‖F‖P,p∨2.

Proof. Let ε1, . . . , εn be independent Rademacher random variables independent ofX1, . . . , Xn.
By the symmetrization inequality (Theorem 8),

E

[∥∥∥∥∥ 1√
n

n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
p

F

]
≤ 2pE

[∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
p

F

]
.

Condition on X1, . . . , Xn. By (7) there exists a constant Cp > 0 depending only on p such
that

E

[∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
p

F

| X1, . . . , Xn

]
≤ Cpp

∥∥∥∥∥
∥∥∥∥∥ 1√

n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

∥∥∥∥∥
p

ψ2|X1,...,Xn

,

where ‖ · ‖ψ2|X1,...,Xn denotes the ψ2-norm evaluated conditionally on X1, . . . , Xn.
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Observe that supf∈F (Pnf
2)1/2 ≤ ‖F‖Pn,2. Now, conditionally on X1, . . . , Xn apply the

Proposition 11 to the right side with T =
{(
f(X1), . . . , f(Xn)

)
: f ∈ F

}
, to obtain,∥∥∥∥∥

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

∥∥∥∥∥
ψ2|X1,...,Xn

≤ C
∫ ‖F‖Pn,2

0

√
1 + logN(F , ‖ · ‖Pn,2, ε)dε

= C‖F‖Pn,2
∫ 1

0

√
1 + logN(F , ‖ · ‖Pn,2, ε‖F‖Pn,2)dε

≤ C‖F‖Pn,2J(1,F , F ).

Apply Fubini’s theorem to integrate out over X1, . . . , Xn, and Jensen’s inequality to

upper bound E
[
‖F‖pPn,2

]
≤ ‖F‖pP,p∨2.

Remark 23. Note the similarity how symmetrization and conditioning are used in this
proof and the first proof of the weak Glivenko-Cantelli theorem (Theorem 11).
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5 Limit Theorems

In this section we consider two types of uniform convergence problems. First, we derive
conditions under which the supremum of an empirical process is uniformly small, i.e.

‖Pn − P‖F → 0 almost surely/ in L1/ in probability.

Second, we discuss conditions under which the rescaled empirical process converges weakly
to a tight Gaussian process, i.e.

√
n(Pn − P ) G in `∞(F),

where {Gf : f ∈ F} is a Gaussian process indexed by F and `∞(F) denotes the space of
all bounded functions F → R equipped with the uniform norm ‖f‖∞ = supx∈R |f(x)|.

5.1 Uniform laws of large numbers for empirical processes

We discuss two uniform laws of large numbers for empirical processes. The first theorem is
rather simple and based on entropy with bracketing. Its proof relies on finite approximation
and the strong law of large numbers for real-valued random variables. The second theorem
uses random L1-entropy numbers and is proved via symmetrization followed by a maximal
inequality.

Recall that we assume that the functions f ∈ F are pointwise measurable (we will often
only write measurable or omit the qualifier all together) in order to avoid measurability
problems.

A uniform law of large numbers via bracketing

Definition 12 (Bracketing numbers). Given two functions l and u the bracket [l, u] is the
set of all functions f with l ≤ f ≤ u. An ε-bracket is a bracket [l, u] with d(l, u) ≤ ε. The
bracketing number N[](F , d, ε) is the minimal number of ε-brackets needed to cover F .

Theorem 15. Let F be such that N[](F , ‖·‖P,1, ε) <∞ for all ε > 0. Then ‖Pn−P‖F → 0
almost surely.

Proof. Fix ε > 0. By assumption there exist finitely many ε-brackets [li, lu] whose union
contains F and such that P (ui − li) ≤ ε for every i. Then, for every f ∈ F , there is a
bracket such that

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε.

Thus, by the uniform law of large numbers for real valued random variables,

sup
f∈F

(Pn − P )f ≤ max
i

(Pn − P )ui + ε
a.s.−→ ε.

Similarly, for every f ∈ F , there is a bracket such that

(Pn − P )f ≥ (Pn − P )li + P (li − f) ≥ (Pn − P )li − ε.

And again by the uniform law of large numbers for real valued random variables,

inf
f∈F

(Pn − P )f ≥ min
i

(Pn − P )li − ε
a.s.−→ −ε.

Conclude that lim supn→∞ ‖Pn − P‖F ≤ ε for every ε > 0. This yields the claim.
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A uniform law of large numbers via random L1-entropy numbers

The condition on the bracketing number in the preceding theorem is rather restrictive and
at times difficult to verify for a given function class F . The next theorem introduces a
weaker entropy condition based on random L1-covering numbers. For M > 0 define the
truncated function class

FM =
{
f1{F≤M} : f ∈ F

}
.

Theorem 16. If PF <∞ and logN(FM , ‖ · ‖Pn,1, ε)
P→ 0 as n→∞ for every M > 0 and

every ε > 0, then ‖Pn − P‖F
P→ 0, and thus ‖Pn − P‖F → 0 almost surely and in L1.

Proof. Let ε1, . . . , εn be independent Rademacher random variables independent ofX1, . . . , Xn.
By the symmetrization inequality (Theorem 8),

E [‖Pn − P‖F ] ≤ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

]

≤ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

εif1{F≤M}(Xi)

∥∥∥∥∥
F

]
+ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

εif(Xi)1{F>M}(Xi)

∥∥∥∥∥
F

]
.

The second term is bounded by

2

n

n∑
i=1

E
[
F (Xi)1{F>M}(Xi)

]
= 2PF1{F>M} → 0 as M →∞.

Therefore, we are left to show that for every M > 0,

E

[∥∥∥∥∥ 1

n

n∑
i=1

εif1{F≤M}(Xi)

∥∥∥∥∥
F

]
→ 0 as n→∞.

Fix X1, . . . , Xn. For ε > 0, let G be an ε-net of FM with respect to the semi-metric
‖ · ‖Pn,1. We compute,

E

[∥∥∥∥∥ 1

n

n∑
i=1

εif1{F≤M}(Xi)

∥∥∥∥∥
F

| X1, . . . , Xn

]

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

εig(Xi)

∥∥∥∥∥
G

| X1, . . . , Xn

+ ε

≤ ε+ C

√
1 + logN(FM , ‖ · ‖Pn,1, ε)

n
sup
g∈G

√√√√ 1

n

n∑
i=1

g2(Xi)

≤ ε+ CM

√
1 + logN(FM , ‖ · ‖Pn,1, ε)

n
,
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where the second inequality follows from (31). We have that

E

[∥∥∥∥∥ 1

n

n∑
i=1

εif1{F≤M}(Xi)

∥∥∥∥∥
F

| X1, . . . , Xn

]
P→ 0.

Since the random quantity in above display is bounded in M , its expectation converges to
zero by the dominated convergence theorem. This concludes the proof that ‖Pn−P‖F → 0
in mean. That it also converges almost surely follows from the fact that the sequence
‖Pn − P‖F is a reverse martingale with respect to a suitably defined filtration. For a proof
of this part, see van der Vaart and Wellner (1996), Theorem 2.4.3.

Corollary 4. If PF < ∞ and n−1 logN(F , ‖ · ‖Pn,1, ε‖F‖Pn,1)
P→ 0 as n → ∞ for every

ε > 0, then ‖Pn − P‖F
P→ 0, and thus ‖Pn − P‖F → 0 almost surely and in L1.

Proof. By Theorem 16 we have to check that logN(FM , ‖ · ‖Pn,1, ε)
P→ 0 as n → ∞ for

every M > 0 and every ε > 0. Without loss of generality we can assume that PF >
0. Then, by the law of large numbers ‖F‖Pn,1 = PnF → PF almost surely and hence
P (‖F‖Pn,1 ≤ 2PF ) → 1. Since logN(FM , ‖ · ‖Pn,1, ε) ≤ logN(F , ‖ · ‖Pn,1, ε/2) we have
that, on the event {‖F‖Pn,1 ≤ 2PF},

logN(FM , ‖ · ‖Pn,1, ε) ≤ logN(F , ‖ · ‖Pn,1, ε‖F‖Pn,1/(4PF )).

Together with the hypothesis this implies logN(FM , ‖ · ‖Pn,1, ε)
P→ 0 as n → ∞ for every

M > 0 and every ε > 0.

Remark 24. The the scaling of the ε with ‖F‖Pn,1 may appear unnecessarily complicated.
However, this is in fact the great virtue of this result, as it can be shown that for a wide
range of different function classes F the entropy logN(F , ‖ · ‖Pn,1, ε‖F‖Pn,1) is vanishingly
small compared to n. The prime example of such function classes are so-called VC-type
classes F which satisfy for some constants A ≥ 1, V ≥ 1 and an envelope F ,

sup
Q
N(F , ‖ · ‖Q,2, ε‖F‖Q,2) ≤ (A/ε)V , 0 < ε ≤ 1,

where the supremum is taken over all finitely discrete probability measures. See also the
proof of below Lemma 8.

5.2 Weak convergence of sample-bounded stochastic processes

Rigorously developing the weak convergence theory for sample-bounded stochastic processes
requires more time than just one lecture. Therefore, in this subsection we do not provide
proofs; instead we discuss two examples/ challenges that have motivated the development of
this theory. We focus on why the statements and conditions of the theorems are reasonable,
not how they are proved.

Definition 13 (Sample-bounded stochastic process). A stochastic process X = {X(t) : t ∈
T} is said to be sample-bounded if supt∈T |X(t, ω)| <∞ for all ω ∈ Ω.
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Remark 25. If X is a sample-bounded stochastic process indexed by a non-empty set T ,
X can be viewed as a map X : Ω → `∞(T ), where `∞(T ) denotes the set of all bounded
functions on T equipped with the supremum norm ‖f‖∞ = supt∈T |f(t)|.

Consider the following definition of weak convergence in metric spaces.

Definition 14 (Weak convergence in metric spaces). Let (S,S) be a measurable space
equipped with some metric. A sequence {Xn}n≥1 of random elements of S converges weakly

to a random element X, written Xn
w→ X, if and only if

E
[
f(Xn)

]
→ E

[
f(X)

]
, (32)

for every bounded, continuous, Borel-measurable function f from S into R.

We would like to extend this weak convergence concept to sample-bounded stochastic
processes. In particular, we hope to develop a notion of weak convergence that can be
applied to empirical processes indexed by a large class of functions F . However, already
the simple empirical distribution function Fn is not Borel-measurable as a map from Ω into
`∞
(
[0, 1]

)
.

Example 1 (Non-measurability of the empirical distribution function). Let X1, . . . , Xn be
independent uniform random variables on [0, 1]. Recall the empirical distribution function

Fn(t, ω) =
1

n

n∑
i=1

1[0,t]

(
Xi(ω)

)
, 0 ≤ t ≤ 1.

The map ω 7→ Fn(t, ω) is not Borel measurable. To see this, let Y (t, ω) = 1[0,t]

(
X1(ω)

)
=

1[X1(ω),1](t), t ∈ [0, 1]. Let Bs be the open ball in `∞([0, 1]) with center 1[s, 1]and radius
1/2. Then, Y (·, ω) ∈ Bs if and only if X1(ω) = s. So, for any subset A ⊂ [0, 1], {ω :
Y (·, ω) ∈ ∪s∈ABs} = {X1 ∈ A}. But if A is a non-measurable subset of [0, 1] then the
collection of open balls ∪s∈ABs cannot be measurable either. Hence, ω 7→ Fn(t, ω) is not
Borel-measurable.

Thus, we now give up the requirement that the Xn’s need to be random elements of
`∞(T ). To define weak convergence of not necessarily Borel-measurable maps from Ω into
`∞(T ) we will therefore introduce the concept of outer expectation.

Definition 15 (Outer expectation). Let Y : Ω → [−∞,∞]. The outer expectation of Y
with respect to P is defined by

E∗[Y ] = inf
{
E[W ] : W ≥ Y, W : Ω→ [−∞,∞] measurable and E[W ] exists

}
.

Remark 26. The outer expectation is defined for all maps Y : Ω → [−∞,∞], since we
may take W = +∞.

Definition 16 (Outer probability). For any A ⊂ Ω, the outer probability for P is defined
by

P∗(A) = inf
{
P(B) : B ⊃ A,B ∈ A

}
.
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We summarize the for us important properties of outer expectation and outer probability
in the following lemma.

Lemma 7. Consider the map Y : Ω→ [−∞,∞].

(i) There exists an a.s.-unique measurable map Y ∗ : Ω→ [−∞,∞] such that Y ∗ ≥ Y and
if W : Ω → [−∞,∞] is measurable and W ≥ Y a.s., then W ≥ Y ∗ a.s. We call Y ∗

the measurable cover of Y .

(ii) If E[Y ∗] exists, then E∗[Y ] = E[Y ∗].

(iii) For any x ∈ R, P∗ {Y > x} = P {Y ∗ > x}.

Proof. See Kato (2017), Lemma 15.

Definition 17 (Tightness). Let (U, d) be a metric space. A random element X in U is said
to be tight if for every ε > 0 there exists a compact set K ⊂ U such that P(X /∈ K) ≤ ε.

Definition 18 (Weak convergence of sample bounded stochastic processes). Let Xn =
{Xn(t) : t ∈ T} be a sequence of sample-bounded stochastic processes indexed by T . We say
that Xn, viewed as maps from Ω into `∞(T ), converges weakly to a tight random element
X in `∞(T ), denoted by Xn

w→ X in `∞(T ), if

E∗
[
f(Xn)

]
→ E

[
f(X)

]
,

for every bounded, continuous function f from `∞(T ) into R.

Remark 27. In this definition, the limit process X must be a tight random element in
`∞(T ), to guarantee that the expectation of f(X) is well-defined. The outer expectation is
needed to properly define the “expectation” of f(Xn) as Xn may not be a Borel-measurable
as maps from Ω into `∞(T ).

To make this definition operational we need primitive conditions such that any sequence
of stochastic processes Xn on T converges weakly to a tight limit process X on T (in the
sense defined above). The following example illustrates what sort of primitive conditions is
needed.

Example 2 (Irregular sample paths and the failure of weak convergence). Consider the
stochastic process Xn = {Xn(t) : t ∈ R}, where

Xn(t) := nt1[0, n−1](t) + (2− nt)1(n−1, 2n−1)(t).

Observe that for any t ∈ R, limn→nXn(t) = X(t) ≡ 0. Therefore, for Xn to converge weakly
to X in the sense of Definition 18 we need to show that E∗

[
f(Xn)

]
→ E

[
f(X)

]
≡ f(0) for

any bounded, continuous function f from `∞(R) into R. We show that this is not the case.
Consider f : `∞(R) → R, where f(Z) = supt∈R |Z(t)|, Z ∈ `∞(R). Then, f is certainly
continuous with respect to the supremum norm ‖ · ‖∞. However,

E∗
[
f(Xn)

]
= sup

t∈R
|Xn(t)| = 1 6→ 0 = sup

t∈R
|X(t)| = E

[
f(X)

]
.

Here, weak convergence fails because the functional f depends on more than just a finite
number of fixed values in R and the infinite collection of sample paths of Xn is extremely
irregular. (Note that any finite collection of sample paths of Xn is relatively well-behaved.)
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This example suggests that we may need to to control the (increments of the) sample
paths of the stochastic processes Xn in order to have weak convergence. This motivates the
following theorem:

Theorem 17. Let Xn = {Xn(t) : t ∈ T} be a sequence of sample-bounded stochastic
processes indexed by T . The following statements are equivalent:

(i) Xn converges weakly to a tight random element X in `∞(T ).

(ii) For every t1, . . . , tk ∈ T and every k ∈ N,
(
Xn(t1), . . . , Xn(tk)

)
converges weakly, and

there exists a semi-metric d for which (T, d) is totally bounded and for every ε > 0,

lim
δ↓0

lim sup
n→∞

P∗

 sup
s,t∈T

d(s,t)<δ

∣∣Xn(s)−Xn(t)
∣∣ > ε

 = 0. (33)

If (ii) holds then the limit process X in (i) has sample paths almost surely uniformly d-
continuous. In addition, if X in (i) has sample paths almost surely uniformly ρ-continuous
for some semi-metric ρ that makes (T, ρ) totally bounded, then the semi-metric d in (33)
can be taken to be d = ρ.

Proof. See Theorem 11 in Kato (2017).

Remark 28. If the increments of Xn satisfy condition (33), then Xn is called asymptoti-
cally uniformly d-equicontinuous in probability.

5.3 A uniform central limit theorem for empirical processes

In this section we establish a uniform central limit theorem for empirical processes indexed
by a function class F . Recall that we assume that the functions f ∈ F are pointwise
measurable (we will often only write measurable) in order to avoid measurability issues.

Definition 19 (Gaussian process). Let X = {X(t) : t ∈ T} be a stochastic process. X is
called a Gaussian process if for every t1, . . . , tk ∈ T , and k ∈ N, the joint distribution of
X(t1), . . . , X(tk) is normal.

Remark 29. Note that a tight random element X in a Banach space B is called Gaussian
if F (X) is Gaussian for every F ∈ B∗, where B∗ is the dual of B, i.e. B∗ is the set of
all continuous linear functionals on B. Recall that (`∞(T ), ‖ · ‖∞) is a Banach space. One
can show that if X = {X(t) : t ∈ T} is a Gaussian process and a tight random element
in `∞(T ), then X is also a tight Gaussian random element in `∞(T ). In fact, these two
interpretations are equivalent; see Ledoux and Talagrand (1996) for details.

Definition 20 (Pre-Gaussian class). A class F = {f : S → R : measurable} is called
P -pre-Gaussian if F ⊂ L2(P ) and if there exists a tight Gaussian random element GP of
`∞(F) such that E

[
GP (f)

]
= 0 and E

[
GP (f)GP (g)

]
for all f, g ∈ F .
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Remark 30. For F ⊂ L2(P ), Kolmogorov’s extension theorem guarantees that there ex-
ists a Gaussian process {GP (f) : f ∈ F} such that GP satisfies that E

[
GP (f)

]
= 0 and

E
[
GP (f)GP (g)

]
for all f, g ∈ F . Definition 20 requires that GP is tight as a random

element in `∞(F).

Definition 21 (Donsker class). Let F = {f : S → R : measurable} ⊂ L2(P ). Suppose
that supf∈F |f(x)| < ∞ for all x ∈ S and that supf∈F |Pf | < ∞. The class F is called
P-Donsker if F is P -pre-Gaussian and the sequence of sample-bounded stochastic processes
{
√
n(Pn − P )f : f ∈ F} converges weakly to GP in `∞(F).

Consider the following two semi-metrics: For all f, g ∈ F ⊂ L2(P ),

ρP,2(f, g) := E
[(
GP (f)−GP (g)

)2]1/2
=
(
P (f − Pf − g + Pg)2

)1/2
,

eP,2(f, g) :=
(
P (f − g)2

)1/2
.

Remark 31. One can show that F is P -pre-Gaussian if and only if (T, ρP,2) is totally
bounded and there exists a version of GP with almost surely uniformly ρP,2-continuous
sample paths. Moreover, we obviously have the ordering ρP,2(f, g) ≤ eP,2(f, g) for all f, g ∈
F . Therefore, one often uses the simpler eP,2 instead of the standard deviation semi-metric
ρP,2.

By Theorem 17 we have the following characterization of P -Donsker classes of functions.

Proposition 12. Let F = {f : S → R : measurable} ⊂ L2(P ). Suppose that supf∈F |f(x)| <
∞ for all x ∈ S and that supf∈F |Pf | <∞. Then the following statements are equivalent:

(i) F is P -Donsker.

(ii) (F , ρP,2) is totally bounded and for every ε > 0;

lim
δ↓0

lim sup
n→∞

P

 sup
f,g∈F

ρP,2(f,g)<δ

∣∣∣∣∣ 1√
n

n∑
i=1

(
(f − g)(Xi)− P (f − g)(Xi)

)∣∣∣∣∣ > ε

 = 0;

(iii) (F , eP,2) is totally bounded and for every ε > 0;

lim
δ↓0

lim sup
n→∞

P

 sup
f,g∈F

eP,2(f,g)<δ

∣∣∣∣∣ 1√
n

n∑
i=1

(
(f − g)(Xi)− P (f − g)(Xi)

)∣∣∣∣∣ > ε

 = 0.

Proof. The equivalence (i) ⇔ (ii) follows from Theorem 17 upon noting that F is P -pre-
Gaussian if and only if (F , ρP,2) is totally bounded and GP has a version that has sample
paths almost surely uniformly ρP,2-continuous. The implication (iii)⇒ (i) also follows from
Theorem 17. We are left to show that (i)⇒ (iii). Since ρP,2 ≤ eP,2, GP has sample paths
almost surely uniformly eP,2-continuous. Thus, by Theorem 17 we only need to show that
(T, eP,2) is totally bounded. Fix ε > 0. Since (T, ρP,2) is totally bounded there exists an
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ε-net {f1, . . . , fN} of F with respect to ρP,2. Since supf∈F |Pf | <∞, for each fi, 1 ≤ i ≤ N ,
the sets {Pf : f ∈ F , ρP,2(f, fi) ≤ ε} ⊂ R are bounded. Thus, for each 1 ≤ i ≤ N , there
exists an ε-net {vi,1, . . . , vi,Ni} of {Pf : f ∈ F , ρP,2(f, fi) ≤ ε} with respect to the distance
induced by the absolute value, i.e. for all x ∈ {Pf : f ∈ F , ρP,2(f, fi) ≤ ε}, there exists
vi,j ∈ {Pf : f ∈ F , ρP,2(f, fi) ≤ ε} such that |x− vi,j | ≤ ε. Note that for every vi,j we can
find fi,j ∈ {f ∈ F : ρP,2(f, fi) ≤ ε} such that vi,j = Pfi,j . Thus, for every f ∈ F ,

e2
P,2(f, fi,j) = ρ2

P,2(f, fi,j) + |Pf − Pfi,j |2

≤ 2ρ2
P,2(f, fi) + 2ρ2

P,2(fi, fi,j) + |Pf − Pfi,j |2

≤ 5ε2.

Therefore, {fi,j : 1 ≤ i ≤ N, 1 ≤ j ≤ Ni} is a
√

5ε-net of F under eP,2. This concludes the
proof.

The following main theorem in this section gives a sufficient condition under which F
is P -Donsker.

Theorem 18. Let F = {f : S → R : measurable}∪{F}, where F is a measurable envelope.
Suppose that PF 2 <∞ and∫ 1

0
sup
Q

√
logN(F , ‖ · ‖Q,2, ε‖F‖Q,2)dε <∞,

where the supremum is taken over all finitely discrete distributions. Then, the class F is
P -Donsker.

Proof. By Proposition 12 we need to check (i) total boundedness of (F , eP,2) and the asymp-
totic equicontinuity condition. The total boundedness of (F , eP,2) follows from the following
lemma.

Lemma 8. supf∈F
∣∣(Pn − P )(f − g)2

∣∣→ 0 almost surely.

Proof. Let H =
{

(f − g)2 : f, g ∈ F
}

. Then, 4F 2 is an envelope function for H. Write
F − F := {f − g : f, g ∈ F}. Then, for f, g ∈ F − F ,

Pn|f2 − g2| = Pn|f − g||f + g| ≤ Pn|f − g|(4F ) ≤ ‖f − g‖Pn,2‖4F‖Pn,2.

Thus,

N(H, ‖ · ‖Pn,1, ε‖4F 2‖Pn,1) ≤ N(F − F , ‖ · ‖Pn,2, ε‖F‖Pn,2)

≤ N2(F , ‖ · ‖Pn,2, ε‖F‖Pn,2/2)

≤ sup
Q
N2(F , ‖ · ‖Q,2, ε‖F‖Q,2/2).

The last line in above display is finite by the entropy integral condition and independent of
sample size n. Thus,

n−1 logN(H, ‖ · ‖Pn,1, ε‖4F 2‖Pn,1)
P→ 0.

Thus, by Corollary 4 we conclude that ‖Pn − P‖H → 0 almost surely.
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It remains to check the asymptotic equicontinuity condition. To do this, we want to
use the maximal inequalities for conditional Rademacher averages. By the symmetrization
inequality for probabilities (Theorem 9), it suffices to prove that for all ε > 0,

lim
δ↓0

lim sup
n→∞

P

 sup
f,g∈F

eP,2(f,g)<δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(Xi)− g(Xi)

)∣∣∣∣∣ > ε

 = 0.

Fix ε > 0. The probability in above display is upper bounded by

P

 sup
f,g∈F

e2Pn,2(f,g)<δ2

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(Xi)− g(Xi)

)∣∣∣∣∣ > ε

+ P

{
sup
f,g∈F

∣∣e2
Pn,2(f, g)− e2

P,2(f, g)
∣∣ > δ2

}
.

(34)

For every fixed δ > 0, the second term (34) goes to zero as n→∞ by Lemma 8. To bound
the first term in above display we apply Corollary 2. Without loss of generality we can
assume that F ≥ 1 (otherwise take max{F, 1} instead of F ). We have,

Eε

 sup
f,g∈F

e2Pn,2(f,g)<δ2

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(Xi)− g(Xi)

)∣∣∣∣∣


≤ C
∫ δ

0

√
logN(F , ePn,2, ε)dε

= C‖F‖Pn,2
∫ δ/‖F‖Pn,2

0

√
logN(F , ePn,2, ε‖F‖Pn,2)dε

≤ C‖F‖Pn,2
∫ δ

0

√
logN(F , ePn,2, ε‖F‖Pn,2)dε

=: C‖F‖Pn,2λ(δ).

Hence, integrating out over X1, . . . , Xn, and applying Jensen’s inequality, we have

E

 sup
f,g∈F

e2Pn,2(f,g)<δ2

∣∣∣∣∣ 1√
n

n∑
i=1

εi
(
f(Xi)− g(Xi)

)∣∣∣∣∣
 ≤ C‖F‖P,2λ(δ).

The right side in above display is independent of the sample size n and λ(δ) → 0 as δ ↓ 0.
Thus, taking first the limit with respect to n → ∞ and then δ ↓ 0 shows that the first
in (34) goes to zero. This completes the proof.
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